本文整理匯總了Python中matplotlib.colors.rgb_to_hsv方法的典型用法代碼示例。如果您正苦於以下問題:Python colors.rgb_to_hsv方法的具體用法?Python colors.rgb_to_hsv怎麽用?Python colors.rgb_to_hsv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.colors
的用法示例。
在下文中一共展示了colors.rgb_to_hsv方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_rgb_hsv_round_trip
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb_to_hsv [as 別名]
def test_rgb_hsv_round_trip():
for a_shape in [(500, 500, 3), (500, 3), (1, 3), (3,)]:
np.random.seed(0)
tt = np.random.random(a_shape)
assert_array_almost_equal(tt,
mcolors.hsv_to_rgb(mcolors.rgb_to_hsv(tt)))
assert_array_almost_equal(tt,
mcolors.rgb_to_hsv(mcolors.hsv_to_rgb(tt)))
示例2: _override_hsv
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb_to_hsv [as 別名]
def _override_hsv(rgb, h=None, s=None, v=None):
h_, s_, v_ = rgb_to_hsv(np.array([[rgb]])).flat
h = h if h is not None else h_
s = s if s is not None else s_
v = v if v is not None else v_
r, g, b = hsv_to_rgb(np.array([[[h, s, v]]])).flat
return r, g, b
#------------------------------------------------------------------------------
# Colormap utilities
#------------------------------------------------------------------------------
示例3: imageColorHist
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb_to_hsv [as 別名]
def imageColorHist(imgPath,imgList,nrows):
ncols=math.ceil(len(imgList)/nrows)
fig,axes=plt.subplots(ncols,nrows,sharex=True,sharey=True,figsize=(15,20))
ax=axes.flatten()
#print(ax)
num_bins = 50 #設置直方圖的bin參數,及柱數量
totalH=np.array([])
totalS=np.array([])
totalV=np.array([])
for i in range(len(imgList)):
#for i in range(3):
#print(i)
img=os.path.join(imgPath,imgList[i])
lum_img=mpimg.imread(img)
lum_imgSmall=misc.imresize(lum_img, 0.3)
lum_imgSmallHSV=mpc.rgb_to_hsv(lum_imgSmall/255) #RGB空間結構不符合人們對顏色相似性的主觀判斷,因此將其轉換為HSV空間、更接近於人們對顏色的主觀認識。色調(H),飽和度(S),明度(V)
#print(lum_imgSmallHSV[...,0].reshape(-1))
ax[i].hist(lum_imgSmallHSV[...,0].reshape(-1), num_bins, normed=1) #提取H色調分量
#print(totalH.shape,lum_imgSmallHSV[...,0].reshape(-1).shape)
totalH=np.append(totalH,lum_imgSmallHSV[...,0].reshape(-1))
totalS=np.append(totalS,lum_imgSmallHSV[...,1].reshape(-1))
totalV=np.append(totalV,lum_imgSmallHSV[...,2].reshape(-1))
ax[i].set_title(i+1)
fig.tight_layout()
fig.suptitle("images show",fontsize=14,fontweight='bold',y=1.02)
totalStat,(totalAXH,totalAXS,totalAXV)=plt.subplots(ncols=3,figsize=(20, 6)) #建立新圖表,用於顯示總體HSV的直方圖統計
totalAXH.hist(totalH*360,num_bins,normed=1,facecolor='y')
totalAXS.hist(totalS*100,num_bins,normed=1,facecolor='k')
totalAXV.hist(totalV*100,num_bins,normed=1,facecolor='g')
plt.show()
示例4: get_random_data
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb_to_hsv [as 別名]
def get_random_data(image, label, input_shape, jitter=.2, hue=.2, sat=1.1, val=1.1):
h, w = input_shape
# resize image
rand_jit1 = rand(1-jitter,1+jitter)
rand_jit2 = rand(1-jitter,1+jitter)
new_ar = w/h * rand_jit1/rand_jit2
scale = rand(.6, 1.4)
if new_ar < 1:
nh = int(scale*h)
nw = int(nh*new_ar)
else:
nw = int(scale*w)
nh = int(nw/new_ar)
image = image.resize((nw,nh), Image.BICUBIC)
label = label.resize((nw,nh), Image.BICUBIC)
# place image
dx = int(rand(0, w-nw))
dy = int(rand(0, h-nh))
new_image = Image.new('RGB', (w,h), (0,0,0))
new_label = Image.new('RGB', (w,h), (0,0,0))
new_image.paste(image, (dx, dy))
new_label.paste(label, (dx, dy))
image = new_image
label = new_label
# flip image or not
flip = rand()<.5
if flip:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
label = label.transpose(Image.FLIP_LEFT_RIGHT)
# distort image
hue = rand(-hue, hue)
sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat)
val = rand(1, val) if rand()<.5 else 1/rand(1, val)
x = rgb_to_hsv(np.array(image)/255.)
x[..., 0] += hue
x[..., 0][x[..., 0]>1] -= 1
x[..., 0][x[..., 0]<0] += 1
x[..., 1] *= sat
x[..., 2] *= val
x[x>1] = 1
x[x<0] = 0
image_data = hsv_to_rgb(x)
return image_data,label
示例5: get_random_data
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb_to_hsv [as 別名]
def get_random_data(image, label, input_shape, jitter=.1, hue=.1, sat=1.1, val=1.1):
h, w = input_shape
# resize image
rand_jit1 = rand(1-jitter,1+jitter)
rand_jit2 = rand(1-jitter,1+jitter)
new_ar = w/h * rand_jit1/rand_jit2
scale = rand(.7, 1.3)
if new_ar < 1:
nh = int(scale*h)
nw = int(nh*new_ar)
else:
nw = int(scale*w)
nh = int(nw/new_ar)
image = image.resize((nw,nh), Image.NEAREST)
label = label.resize((nw,nh), Image.NEAREST)
# place image
dx = int(rand(0, w-nw))
dy = int(rand(0, h-nh))
new_image = Image.new('RGB', (w,h), (0,0,0))
new_label = Image.new('RGB', (w,h), (0,0,0))
new_image.paste(image, (dx, dy))
new_label.paste(label, (dx, dy))
image = new_image
label = new_label
# flip image or not
flip = rand()<.5
if flip:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
label = label.transpose(Image.FLIP_LEFT_RIGHT)
# distort image
hue = rand(-hue, hue)
sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat)
val = rand(1, val) if rand()<.5 else 1/rand(1, val)
x = rgb_to_hsv(np.array(image)/255.)
x[..., 0] += hue
x[..., 0][x[..., 0]>1] -= 1
x[..., 0][x[..., 0]<0] += 1
x[..., 1] *= sat
x[..., 2] *= val
x[x>1] = 1
x[x<0] = 0
image_data = hsv_to_rgb(x)
return image_data,label
示例6: get_random_data
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb_to_hsv [as 別名]
def get_random_data(annotation_line, input_shape, random=True, max_boxes=20, jitter=.3, hue=.1, sat=1.5, val=1.5, proc_img=True):
'''r實時數據增強的隨機預處理'''
line = annotation_line.split()
image = Image.open(line[0])
iw, ih = image.size
h, w = input_shape
box = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]])
# resize image
new_ar = w/h * rand(1-jitter,1+jitter)/rand(1-jitter,1+jitter)
scale = rand(.25, 2)
if new_ar < 1:
nh = int(scale*h)
nw = int(nh*new_ar)
else:
nw = int(scale*w)
nh = int(nw/new_ar)
image = image.resize((nw,nh), Image.BICUBIC)
# place image
dx = int(rand(0, w-nw))
dy = int(rand(0, h-nh))
new_image = Image.new('RGB', (w,h), (128,128,128))
new_image.paste(image, (dx, dy))
image = new_image
# flip image or not
flip = rand()<.5
if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT)
# distort image
hue = rand(-hue, hue)
sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat)
val = rand(1, val) if rand()<.5 else 1/rand(1, val)
x = rgb_to_hsv(np.array(image)/255.)
x[..., 0] += hue
x[..., 0][x[..., 0]>1] -= 1
x[..., 0][x[..., 0]<0] += 1
x[..., 1] *= sat
x[..., 2] *= val
x[x>1] = 1
x[x<0] = 0
image_data = hsv_to_rgb(x) # numpy array, 0 to 1
# correct boxes
box_data = np.zeros((max_boxes,5))
if len(box)>0:
np.random.shuffle(box)
box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx
box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy
if flip: box[:, [0,2]] = w - box[:, [2,0]]
box[:, 0:2][box[:, 0:2]<0] = 0
box[:, 2][box[:, 2]>w] = w
box[:, 3][box[:, 3]>h] = h
box_w = box[:, 2] - box[:, 0]
box_h = box[:, 3] - box[:, 1]
box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid box
if len(box)>max_boxes: box = box[:max_boxes]
box_data[:len(box)] = box
return image_data, box_data
示例7: distort_color
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb_to_hsv [as 別名]
def distort_color(img, fast_mode=True,
brightness_delta=32./255., hue_delta=0.2, saturation_range=(0.5, 1.5), contrast_range=(0.5, 1.5),
data_format='channels_last'):
nonnormalized = (img.max() > 2.0)
if nonnormalized:
img = img.astype(np.float32) / 255.
if data_format == 'channels_first':
img = np.transpose(img, (1, 2, 0))
if (not nonnormalized) and (data_format == 'channels_last'):
img = img.copy()
noop = lambda x: x
brightness_hsv = (lambda x: random_brightness_hsv(x, max_delta=brightness_delta)) if brightness_delta > 0 else noop
saturation = (lambda x: random_saturation(x, *saturation_range)) if (saturation_range[0] <= saturation_range[1]) and ((saturation_range[0] != 1) or (saturation_range[1] != 1)) else noop
if fast_mode:
ordering = np.random.choice(2)
if ordering == 0:
img = hsv_to_rgb(saturation(brightness_hsv(rgb_to_hsv(img))))
else:
img = hsv_to_rgb(brightness_hsv(saturation(rgb_to_hsv(img))))
else:
brightness = (lambda x: random_brightness(x, max_delta=brightness_delta)) if brightness_delta > 0 else noop
hue = (lambda x: random_hue(x, max_delta=hue_delta)) if hue_delta > 0 else noop
contrast = (lambda x: random_contrast(x, *contrast_range)) if (contrast_range[0] <= contrast_range[1]) and ((contrast_range[0] != 1) or (contrast_range[1] != 1)) else noop
ordering = np.random.choice(4)
if ordering == 0:
img = contrast(hsv_to_rgb(hue(saturation(rgb_to_hsv(brightness(img))))))
elif ordering == 1:
img = hsv_to_rgb(hue(rgb_to_hsv(contrast(brightness(hsv_to_rgb(saturation(rgb_to_hsv(img))))))))
elif ordering == 2:
img = hsv_to_rgb(saturation(brightness_hsv(hue(rgb_to_hsv(contrast(img))))))
elif ordering == 3:
img = brightness(contrast(hsv_to_rgb(saturation(hue(rgb_to_hsv(img))))))
if data_format == 'channels_first':
img = np.transpose(img, (2, 0, 1))
if nonnormalized:
img = img * 255.
return img
示例8: plot_colortable
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb_to_hsv [as 別名]
def plot_colortable(colors, title, sort_colors=True, emptycols=0):
cell_width = 212
cell_height = 22
swatch_width = 48
margin = 12
topmargin = 40
# Sort colors by hue, saturation, value and name.
by_hsv = ((tuple(mcolors.rgb_to_hsv(mcolors.to_rgba(color)[:3])), name)
for name, color in colors.items())
if sort_colors is True:
by_hsv = sorted(by_hsv)
names = [name for hsv, name in by_hsv]
n = len(names)
ncols = 4 - emptycols
nrows = n // ncols + int(n % ncols > 0)
width = cell_width * 4 + 2 * margin
height = cell_height * nrows + margin + topmargin
dpi = 72
fig, ax = plt.subplots(figsize=(width / dpi, height / dpi), dpi=dpi)
fig.subplots_adjust(margin/width, margin/height,
(width-margin)/width, (height-topmargin)/height)
ax.set_xlim(0, cell_width * 4)
ax.set_ylim(cell_height * (nrows-0.5), -cell_height/2.)
ax.yaxis.set_visible(False)
ax.xaxis.set_visible(False)
ax.set_axis_off()
ax.set_title(title, fontsize=24, loc="left", pad=10)
for i, name in enumerate(names):
row = i % nrows
col = i // nrows
y = row * cell_height
swatch_start_x = cell_width * col
swatch_end_x = cell_width * col + swatch_width
text_pos_x = cell_width * col + swatch_width + 7
ax.text(text_pos_x, y, name, fontsize=14,
horizontalalignment='left',
verticalalignment='center')
ax.hlines(y, swatch_start_x, swatch_end_x,
color=colors[name], linewidth=18)
return fig