本文整理匯總了Python中matplotlib.colors.rgb2hex方法的典型用法代碼示例。如果您正苦於以下問題:Python colors.rgb2hex方法的具體用法?Python colors.rgb2hex怎麽用?Python colors.rgb2hex使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.colors
的用法示例。
在下文中一共展示了colors.rgb2hex方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _to_hex
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb2hex [as 別名]
def _to_hex(c):
"""Convert arbitray color specification to hex string."""
ctype = type(c)
# Convert rgb to hex.
if ctype is tuple or ctype is np.ndarray or ctype is list:
return colors.rgb2hex(c)
if ctype is str:
# If color is already hex, simply return it.
regex = re.compile('^#[A-Fa-f0-9]{6}$')
if regex.match(c):
return c
# Convert named color to hex.
return colors.cnames[c]
raise Exception("Can't handle color of type: {}".format(ctype))
示例2: list_of_hex_colours
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb2hex [as 別名]
def list_of_hex_colours(N, base_cmap):
"""
Return a list of colors from a colourmap as hex codes
Arguments:
cmap: colormap instance, eg. cm.jet.
N: number of colors.
Author: FJC
"""
cmap = _cm.get_cmap(base_cmap, N)
hex_codes = []
for i in range(cmap.N):
rgb = cmap(i)[:3] # will return rgba, we take only first 3 so we get rgb
hex_codes.append(_mcolors.rgb2hex(rgb))
return hex_codes
示例3: contourf_to_geojson_overlap
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb2hex [as 別名]
def contourf_to_geojson_overlap(contourf, geojson_filepath=None, min_angle_deg=None,
ndigits=5, unit='', stroke_width=1, fill_opacity=.9,
geojson_properties=None, strdump=False, serialize=True):
"""Transform matplotlib.contourf to geojson with overlapping filled contours."""
polygon_features = []
contourf_idx = 0
contourf_levels = get_contourf_levels(contourf.levels, contourf.extend)
for collection in contourf.collections:
color = collection.get_facecolor()
for path in collection.get_paths():
for coord in path.to_polygons():
if min_angle_deg:
coord = keep_high_angle(coord, min_angle_deg)
coord = np.around(coord, ndigits) if ndigits else coord
polygon = Polygon(coordinates=[coord.tolist()])
fcolor = rgb2hex(color[0])
properties = set_contourf_properties(stroke_width, fcolor, fill_opacity, contourf_levels[contourf_idx], unit)
if geojson_properties:
properties.update(geojson_properties)
feature = Feature(geometry=polygon, properties=properties)
polygon_features.append(feature)
contourf_idx += 1
feature_collection = FeatureCollection(polygon_features)
return _render_feature_collection(feature_collection, geojson_filepath, strdump, serialize)
示例4: scatter_group
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb2hex [as 別名]
def scatter_group(ax, key, imask, adata, Y, projection='2d', size=3, alpha=None):
"""Scatter of group using representation of data Y.
"""
mask = adata.obs[key].cat.categories[imask] == adata.obs[key].values
color = adata.uns[key + '_colors'][imask]
if not isinstance(color[0], str):
from matplotlib.colors import rgb2hex
color = rgb2hex(adata.uns[key + '_colors'][imask])
if not is_color_like(color):
raise ValueError('"{}" is not a valid matplotlib color.'.format(color))
data = [Y[mask, 0], Y[mask, 1]]
if projection == '3d':
data.append(Y[mask, 2])
ax.scatter(
*data,
marker='.',
alpha=alpha,
c=color,
edgecolors='none',
s=size,
label=adata.obs[key].cat.categories[imask],
rasterized=settings._vector_friendly,
)
return mask
示例5: generateColourDict
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb2hex [as 別名]
def generateColourDict(colour_groups, groups):
cmap = [rgb2hex(rgb) for rgb in cm.get_cmap(name=COLOURMAP).colors]
# remove green
del cmap[2]
# remove brown
del cmap[4]
colour_d = {}
idx_delay = 0
for idx, group in enumerate(groups):
if group in colour_groups:
#print(group,)
if group == 'no-hit' or group == 'None':
colour_d[group] = GREY
#print("GREY")
idx_delay -= 1
else:
colour_d[group] = cmap[idx+idx_delay]
#print(colour_d[group], idx+idx_delay)
return colour_d
示例6: scatter_plot
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb2hex [as 別名]
def scatter_plot(ax, points: np.array, triangles: np.array, E2: np.array):
'''
plots scatter data
Note: The axis has to be made with mpl_toolkits.mplot3d.Axes3D
'''
# get the maximum value of E2
r_max = np.max(E2)
for i in range(triangles.shape[0]):
vtx = np.vstack([
E2[int(triangles[i, 0])] * points[int(triangles[i, 0])],
E2[int(triangles[i, 1])] * points[int(triangles[i, 1])],
E2[int(triangles[i, 2])] * points[int(triangles[i, 2])]
])
r = np.sum((np.sum(vtx, axis=0) / 3)**2)**0.5
tri = a3.art3d.Poly3DCollection([vtx])
tri.set_color(colors.rgb2hex(get_jet_colors(r / r_max)))
tri.set_edgecolor('k')
ax.add_collection3d(tri)
ax.set_xlim(-r_max, r_max)
ax.set_ylim(-r_max, r_max)
ax.set_zlim(-r_max, r_max)
# Analysis functions
#####################
示例7: dismph_colormap
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb2hex [as 別名]
def dismph_colormap():
'''Make a custom colormap like the one used in dismph. The list was
created from dismphN.mat in geodmod which is a 64 segmented colormap
using the following:
from scipy.io import loadmat
cmap = loadmat('dismphN.mat',struct_as_record=True)['dismphN']
from matplotlib.colors import rgb2hex
list=[]
for i in cmap: list.append(rgb2hex(i))
'''
list = ['#f579cd', '#f67fc6', '#f686bf', '#f68cb9', '#f692b3', '#f698ad',
'#f69ea7', '#f6a5a1', '#f6ab9a', '#f6b194', '#f6b78e', '#f6bd88',
'#f6c482', '#f6ca7b', '#f6d075', '#f6d66f', '#f6dc69', '#f6e363',
'#efe765', '#e5eb6b', '#dbf071', '#d0f477', '#c8f67d', '#c2f684',
'#bbf68a', '#b5f690', '#aff696', '#a9f69c', '#a3f6a3', '#9cf6a9',
'#96f6af', '#90f6b5', '#8af6bb', '#84f6c2', '#7df6c8', '#77f6ce',
'#71f6d4', '#6bf6da', '#65f6e0', '#5ef6e7', '#58f0ed', '#52e8f3',
'#4cdbf9', '#7bccf6', '#82c4f6', '#88bdf6', '#8eb7f6', '#94b1f6',
'#9aabf6', '#a1a5f6', '#a79ef6', '#ad98f6', '#b392f6', '#b98cf6',
'#bf86f6', '#c67ff6', '#cc79f6', '#d273f6', '#d86df6', '#de67f6',
'#e561f6', '#e967ec', '#ed6de2', '#f173d7']
dismphCM = matplotlib.colors.LinearSegmentedColormap.from_list('mycm', list)
dismphCM.set_bad('w', 0.0)
return dismphCM
示例8: contour_to_geojson
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb2hex [as 別名]
def contour_to_geojson(contour, geojson_filepath=None, min_angle_deg=None,
ndigits=5, unit='', stroke_width=1, geojson_properties=None, strdump=False,
serialize=True):
"""Transform matplotlib.contour to geojson."""
collections = contour.collections
contour_index = 0
line_features = []
for collection in collections:
color = collection.get_edgecolor()
for path in collection.get_paths():
v = path.vertices
if len(v) < 3:
continue
coordinates = keep_high_angle(v, min_angle_deg) if min_angle_deg else v
coordinates = np.around(coordinates, ndigits) if ndigits is not None else coordinates
line = LineString(coordinates.tolist())
properties = {
"stroke-width": stroke_width,
"stroke": rgb2hex(color[0]),
"title": "%.2f" % contour.levels[contour_index] + ' ' + unit,
"level-value": float("%.6f" % contour.levels[contour_index]),
"level-index": contour_index
}
if geojson_properties:
properties.update(geojson_properties)
line_features.append(Feature(geometry=line, properties=properties))
contour_index += 1
feature_collection = FeatureCollection(line_features)
return _render_feature_collection(feature_collection, geojson_filepath, strdump, serialize)
示例9: contourf_to_geojson
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb2hex [as 別名]
def contourf_to_geojson(contourf, geojson_filepath=None, min_angle_deg=None,
ndigits=5, unit='', stroke_width=1, fill_opacity=.9, fill_opacity_range=None,
geojson_properties=None, strdump=False, serialize=True):
"""Transform matplotlib.contourf to geojson with MultiPolygons."""
if fill_opacity_range:
variable_opacity = True
min_opacity, max_opacity = fill_opacity_range
opacity_increment = (max_opacity - min_opacity) / len(contourf.levels)
fill_opacity = min_opacity
else:
variable_opacity = False
polygon_features = []
contourf_levels = get_contourf_levels(contourf.levels, contourf.extend)
for coll, level in zip(contourf.collections, contourf_levels):
color = coll.get_facecolor()
muli = MP(coll, min_angle_deg, ndigits)
polygon = muli.mpoly()
fcolor = rgb2hex(color[0])
properties = set_contourf_properties(stroke_width, fcolor, fill_opacity, level, unit)
if geojson_properties:
properties.update(geojson_properties)
feature = Feature(geometry=polygon, properties=properties)
polygon_features.append(feature)
if variable_opacity:
fill_opacity += opacity_increment
feature_collection = FeatureCollection(polygon_features)
return _render_feature_collection(feature_collection, geojson_filepath, strdump, serialize)
示例10: _background_gradient
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb2hex [as 別名]
def _background_gradient(s, cmap='PuBu', low=0, high=0):
"""Color background in a range according to the data."""
with _mpl(Styler.background_gradient) as (plt, colors):
rng = s.max() - s.min()
# extend lower / upper bounds, compresses color range
norm = colors.Normalize(s.min() - (rng * low),
s.max() + (rng * high))
# matplotlib modifies inplace?
# https://github.com/matplotlib/matplotlib/issues/5427
normed = norm(s.values)
c = [colors.rgb2hex(x) for x in plt.cm.get_cmap(cmap)(normed)]
return ['background-color: {color}'.format(color=color)
for color in c]
示例11: convert_colormap_to_hex
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb2hex [as 別名]
def convert_colormap_to_hex(cmap, x, vmin=0, vmax=1):
"""
Example::
>>> seaborn.palplot(seaborn.color_palette("RdBu_r", 7))
>>> colorMapRGB = seaborn.color_palette("RdBu_r", 61)
>>> colormap = seaborn.blend_palette(colorMapRGB, as_cmap=True, input='rgb')
>>> [convert_colormap_to_hex(colormap, x, vmin=-2, vmax=2) for x in range(-2, 3)]
['#09386d', '#72b1d3', '#f7f6f5', '#e7866a', '#730421']
"""
norm = colors.Normalize(vmin, vmax)
color_rgb = plt.cm.get_cmap(cmap)(norm(x))
color_hex = colors.rgb2hex(color_rgb)
return color_hex
示例12: col2hex
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb2hex [as 別名]
def col2hex(color):
"""Convert matplotlib color to hex before passing to Qt"""
return rgb2hex(colorConverter.to_rgb(color))
示例13: _write_hatches
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb2hex [as 別名]
def _write_hatches(self):
if not len(self._hatchd):
return
HATCH_SIZE = 72
writer = self.writer
writer.start('defs')
for ((path, face, stroke), oid) in self._hatchd.values():
writer.start(
u'pattern',
id=oid,
patternUnits=u"userSpaceOnUse",
x=u"0", y=u"0", width=unicode(HATCH_SIZE), height=unicode(HATCH_SIZE))
path_data = self._convert_path(
path,
Affine2D().scale(HATCH_SIZE).scale(1.0, -1.0).translate(0, HATCH_SIZE),
simplify=False)
if face is None:
fill = u'none'
else:
fill = rgb2hex(face)
writer.element(
u'rect',
x=u"0", y=u"0", width=unicode(HATCH_SIZE+1), height=unicode(HATCH_SIZE+1),
fill=fill)
writer.element(
u'path',
d=path_data,
style=generate_css({
u'fill': rgb2hex(stroke),
u'stroke': rgb2hex(stroke),
u'stroke-width': u'1.0',
u'stroke-linecap': u'butt',
u'stroke-linejoin': u'miter'
})
)
writer.end(u'pattern')
writer.end(u'defs')
示例14: random_colorizer
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb2hex [as 別名]
def random_colorizer(profile, *args, **kwargs):
return mcolors.rgb2hex(np.random.rand(3))
示例15: _write_hatches
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import rgb2hex [as 別名]
def _write_hatches(self):
if not len(self._hatchd):
return
HATCH_SIZE = 72
writer = self.writer
writer.start('defs')
for (path, face, stroke), oid in self._hatchd.values():
writer.start(
'pattern',
id=oid,
patternUnits="userSpaceOnUse",
x="0", y="0", width=str(HATCH_SIZE),
height=str(HATCH_SIZE))
path_data = self._convert_path(
path,
Affine2D()
.scale(HATCH_SIZE).scale(1.0, -1.0).translate(0, HATCH_SIZE),
simplify=False)
if face is None:
fill = 'none'
else:
fill = rgb2hex(face)
writer.element(
'rect',
x="0", y="0", width=str(HATCH_SIZE+1),
height=str(HATCH_SIZE+1),
fill=fill)
writer.element(
'path',
d=path_data,
style=generate_css({
'fill': rgb2hex(stroke),
'stroke': rgb2hex(stroke),
'stroke-width': str(rcParams['hatch.linewidth']),
'stroke-linecap': 'butt',
'stroke-linejoin': 'miter'
})
)
writer.end('pattern')
writer.end('defs')