本文整理匯總了Python中matplotlib.colors方法的典型用法代碼示例。如果您正苦於以下問題:Python matplotlib.colors方法的具體用法?Python matplotlib.colors怎麽用?Python matplotlib.colors使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib
的用法示例。
在下文中一共展示了matplotlib.colors方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: color_overlap
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def color_overlap(color1, *args):
'''
color_overlap(color1, color2...) yields the rgba value associated with overlaying color2 on top
of color1 followed by any additional colors (overlaid left to right). This respects alpha
values when calculating the results.
Note that colors may be lists of colors, in which case a matrix of RGBA values is yielded.
'''
args = list(args)
args.insert(0, color1)
rgba = np.asarray([0.5,0.5,0.5,0])
for c in args:
c = to_rgba(c)
a = c[...,3]
a0 = rgba[...,3]
if np.isclose(a0, 0).all(): rgba = np.ones(rgba.shape) * c
elif np.isclose(a, 0).all(): continue
else: rgba = times(a, c) + times(1-a, rgba)
return rgba
示例2: eccen_colors
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def eccen_colors(*args, **kwargs):
'''
eccen_colors(obj) yields an array of colors for the eccentricity map of the given
property-bearing object (cortex, tesselation, mesh).
eccen_colors(dict) yields an array of the color for the particular vertex property mapping
that is given as dict.
eccen_colors() yields a functor version of eccen_colors that can be called with one of the
above arguments; note that this is useful precisely because the returned function
preserves the arguments passed; e.g. eccen_colors(weighted=False)(mesh) is equivalent to
eccen_colors(mesh, weighted=False).
The following options are accepted:
* weighted (True) specifies whether to use weight as opacity.
* weight_min (0.2) specifies that below this weight value, the curvature (or null color)
should be plotted.
* property (Ellipsis) specifies the specific property that should be used as the
eccentricity value; if Ellipsis, will attempt to auto-detect this value.
* weight (Ellipsis) specifies the specific property that should be used as the weight value.
* null_color ('curvature') specifies a color that should be used as the background.
'''
return retino_colors(vertex_eccen_color, *args, **kwargs)
示例3: sigma_colors
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def sigma_colors(*args, **kwargs):
'''
sigma_colors(obj) yields an array of colors for the pRF-radius map of the given
property-bearing object (cortex, tesselation, mesh).
sigma_colors(dict) yields an array of the color for the particular vertex property mapping
that is given as dict.
sigma_colors() yields a functor version of sigma_colors that can be called with one of the
above arguments; note that this is useful precisely because the returned function
preserves the arguments passed; e.g. sigma_colors(weighted=False)(mesh) is equivalent to
sigma_colors(mesh, weighted=False).
Note: radius_colors() is an alias for sigma_colors().
The following options are accepted:
* weighted (True) specifies whether to use weight as opacity.
* weight_min (0.2) specifies that below this weight value, the curvature (or null color)
should be plotted.
* property (Ellipsis) specifies the specific property that should be used as the
eccentricity value; if Ellipsis, will attempt to auto-detect this value.
* weight (Ellipsis) specifies the specific property that should be used as the weight value.
* null_color ('curvature') specifies a color that should be used as the background.
'''
return retino_colors(vertex_sigma_color, *args, **kwargs)
示例4: varea_colors
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def varea_colors(*args, **kwargs):
'''
varea_colors(obj) yields an array of colors for the visual area map of the given
property-bearing object (cortex, tesselation, mesh).
varea_colors(dict) yields an array of the color for the particular vertex property mapping
that is given as dict.
varea_colors() yields a functor version of varea_colors that can be called with one of the
above arguments; note that this is useful precisely because the returned function
preserves the arguments passed; e.g. varea_colors(weighted=False)(mesh) is equivalent to
varea_colors(mesh, weighted=False).
The following options are accepted:
* weighted (True) specifies whether to use weight as opacity.
* weight_min (0.2) specifies that below this weight value, the curvature (or null color)
should be plotted.
* property (Ellipsis) specifies the specific property that should be used as the
eccentricity value; if Ellipsis, will attempt to auto-detect this value.
* weight (Ellipsis) specifies the specific property that should be used as the weight value.
* null_color ('curvature') specifies a color that should be used as the background.
'''
return retino_colors(vertex_varea_color, *args, **kwargs)
示例5: label_colors
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def label_colors(lbls, cmap=None):
'''
label_colors(labels) yields a dict object whose keys are the unique values in labels and whose
values are the (r,g,b,a) colors that should be assigned to each label.
label_colors(n) is equivalent to label_colors(range(n)).
Note that this function uses a heuristic and is not guaranteed to be optimal in any way for any
value of n--but it generally works well enough for most common purposes.
The following optional arguments may be given:
* cmap (default: None) specifies a colormap to use as a base. If this is None, then a varianct
of 'hsv' is used.
'''
from neuropythy.graphics import label_cmap
if pimms.is_int(lbls): lbls = np.arange(lbls)
lbls0 = np.unique(lbls)
lbls = np.arange(len(lbls0))
cm = label_cmap(lbls, cmap=cmap)
mx = float(len(lbls) - 1)
m = {k:cm(l/mx) for (k,l) in zip(lbls0, lbls)}
return m
示例6: cmap
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def cmap(self, data=None):
'''
lblidx.cmap() yields a colormap for the given label index object that assumes that the data
being plotted will be rescaled such that label 0 is 0 and the highest label value in the
label index is equal to 1.
lblidx.cmap(data) yields a colormap that will correctly color the labels given in data if
data is scaled such that its minimum and maximum value are 0 and 1.
'''
import matplotlib.colors
from_list = matplotlib.colors.LinearSegmentedColormap.from_list
if data is None: return self.colormap
data = np.asarray(data).flatten()
(vmin,vmax) = (np.min(data), np.max(data))
ii = np.argsort(self.ids)
ids = np.asarray(self.ids)[ii]
if vmin == vmax:
(vmin,vmax,ii) = (vmin-0.5, vmax+0.5, vmin)
clr = self.color_lookup(ii)
return from_list('label1', [(0, clr), (1, clr)])
q = (ids >= vmin) & (ids <= vmax)
ids = ids[q]
clrs = self.color_lookup(ids)
vals = (ids - vmin) / (vmax - vmin)
return from_list('label%d' % len(vals), list(zip(vals, clrs)))
示例7: getColor
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def getColor(self,name):
if name.find("#") == 0:
return(name)
colors = mcolors.get_named_colors_mapping()
color = None
if name in colors:
color = colors[name]
elif name == "lightest":
color = self.lightest
elif name == "darkest":
color = self.darkest
return(color)
示例8: convertColormap
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def convertColormap(name):
cmap = matplotlib.cm.get_cmap(name)
norm = matplotlib.colors.Normalize(vmin = 0,vmax = 255)
rgb = []
for i in range(0, 255):
k = matplotlib.colors.colorConverter.to_rgb(cmap(norm(i)))
rgb.append(k)
entries = 255
h = 1.0 / (entries - 1)
colorscale = []
for k in range(entries):
C = list(map(np.uint8,np.array(cmap(k * h)[:3]) * 255))
colorscale.append([k * h,"rgb" + str((C[0], C[1], C[2]))])
return(colorscale)
示例9: set_cmap
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def set_cmap(cmap):
"""
Set the default colormap. Applies to the current image if any.
See help(colormaps) for more information.
*cmap* must be a :class:`~matplotlib.colors.Colormap` instance, or
the name of a registered colormap.
See :func:`matplotlib.cm.register_cmap` and
:func:`matplotlib.cm.get_cmap`.
"""
cmap = cm.get_cmap(cmap)
rc('image', cmap=cmap.name)
im = gci()
if im is not None:
im.set_cmap(cmap)
draw_if_interactive()
示例10: hlines
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def hlines(y, xmin, xmax, colors='k', linestyles='solid', label='', hold=None,
**kwargs):
ax = gca()
# allow callers to override the hold state by passing hold=True|False
washold = ax.ishold()
if hold is not None:
ax.hold(hold)
try:
ret = ax.hlines(y, xmin, xmax, colors=colors, linestyles=linestyles,
label=label, **kwargs)
draw_if_interactive()
finally:
ax.hold(washold)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
示例11: pie
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def pie(x, explode=None, labels=None, colors=None, autopct=None,
pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None,
radius=None, hold=None):
ax = gca()
# allow callers to override the hold state by passing hold=True|False
washold = ax.ishold()
if hold is not None:
ax.hold(hold)
try:
ret = ax.pie(x, explode=explode, labels=labels, colors=colors,
autopct=autopct, pctdistance=pctdistance, shadow=shadow,
labeldistance=labeldistance, startangle=startangle,
radius=radius)
draw_if_interactive()
finally:
ax.hold(washold)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
示例12: vlines
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def vlines(x, ymin, ymax, colors='k', linestyles='solid', label='', hold=None,
**kwargs):
ax = gca()
# allow callers to override the hold state by passing hold=True|False
washold = ax.ishold()
if hold is not None:
ax.hold(hold)
try:
ret = ax.vlines(x, ymin, ymax, colors=colors, linestyles=linestyles,
label=label, **kwargs)
draw_if_interactive()
finally:
ax.hold(washold)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
示例13: eventplot
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def eventplot(positions, orientation='horizontal', lineoffsets=1, linelengths=1,
linewidths=None, colors=None, linestyles='solid', hold=None,
**kwargs):
ax = gca()
# allow callers to override the hold state by passing hold=True|False
washold = ax.ishold()
if hold is not None:
ax.hold(hold)
try:
ret = ax.eventplot(positions, orientation=orientation,
lineoffsets=lineoffsets, linelengths=linelengths,
linewidths=linewidths, colors=colors,
linestyles=linestyles, **kwargs)
draw_if_interactive()
finally:
ax.hold(washold)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
示例14: pie
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def pie(x, explode=None, labels=None, colors=None, autopct=None,
pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None,
radius=None, counterclock=True, wedgeprops=None, textprops=None,
hold=None):
ax = gca()
# allow callers to override the hold state by passing hold=True|False
washold = ax.ishold()
if hold is not None:
ax.hold(hold)
try:
ret = ax.pie(x, explode=explode, labels=labels, colors=colors,
autopct=autopct, pctdistance=pctdistance, shadow=shadow,
labeldistance=labeldistance, startangle=startangle,
radius=radius, counterclock=counterclock,
wedgeprops=wedgeprops, textprops=textprops)
draw_if_interactive()
finally:
ax.hold(washold)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
示例15: plot_graph
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def plot_graph(self, am, position=None, cls=None, fig_name='graph.png'):
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
g = nx.from_numpy_matrix(am)
if position is None:
position=nx.drawing.circular_layout(g)
fig = plt.figure()
if cls is None:
cls='r'
else:
# Make a user-defined colormap.
cm1 = mcol.LinearSegmentedColormap.from_list("MyCmapName", ["r", "b"])
# Make a normalizer that will map the time values from
# [start_time,end_time+1] -> [0,1].
cnorm = mcol.Normalize(vmin=0, vmax=1)
# Turn these into an object that can be used to map time values to colors and
# can be passed to plt.colorbar().
cpick = cm.ScalarMappable(norm=cnorm, cmap=cm1)
cpick.set_array([])
cls = cpick.to_rgba(cls)
plt.colorbar(cpick, ax=fig.add_subplot(111))
nx.draw(g, pos=position, node_color=cls, ax=fig.add_subplot(111))
fig.savefig(os.path.join(self.plotdir, fig_name))