當前位置: 首頁>>代碼示例>>Python>>正文


Python matplotlib.colors方法代碼示例

本文整理匯總了Python中matplotlib.colors方法的典型用法代碼示例。如果您正苦於以下問題:Python matplotlib.colors方法的具體用法?Python matplotlib.colors怎麽用?Python matplotlib.colors使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib的用法示例。


在下文中一共展示了matplotlib.colors方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: color_overlap

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def color_overlap(color1, *args):
    '''
    color_overlap(color1, color2...) yields the rgba value associated with overlaying color2 on top
      of color1 followed by any additional colors (overlaid left to right). This respects alpha
      values when calculating the results.
    Note that colors may be lists of colors, in which case a matrix of RGBA values is yielded.
    '''
    args = list(args)
    args.insert(0, color1)
    rgba = np.asarray([0.5,0.5,0.5,0])
    for c in args:
        c = to_rgba(c)
        a = c[...,3]
        a0 = rgba[...,3]
        if   np.isclose(a0, 0).all(): rgba = np.ones(rgba.shape) * c
        elif np.isclose(a,  0).all(): continue
        else:                         rgba = times(a, c) + times(1-a, rgba)
    return rgba 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:20,代碼來源:core.py

示例2: eccen_colors

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def eccen_colors(*args, **kwargs):
    '''
    eccen_colors(obj) yields an array of colors for the eccentricity map of the given
      property-bearing object (cortex, tesselation, mesh).
    eccen_colors(dict) yields an array of the color for the particular vertex property mapping
      that is given as dict.
    eccen_colors() yields a functor version of eccen_colors that can be called with one of the
      above arguments; note that this is useful precisely because the returned function
      preserves the arguments passed; e.g. eccen_colors(weighted=False)(mesh) is equivalent to
      eccen_colors(mesh, weighted=False).

    The following options are accepted:
      * weighted (True) specifies whether to use weight as opacity.
      * weight_min (0.2) specifies that below this weight value, the curvature (or null color)
        should be plotted.
      * property (Ellipsis) specifies the specific property that should be used as the
        eccentricity value; if Ellipsis, will attempt to auto-detect this value.
      * weight (Ellipsis) specifies  the specific property that should be used as the weight value.
      * null_color ('curvature') specifies a color that should be used as the background.
    '''
    return retino_colors(vertex_eccen_color, *args, **kwargs) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:23,代碼來源:core.py

示例3: sigma_colors

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def sigma_colors(*args, **kwargs):
    '''
    sigma_colors(obj) yields an array of colors for the pRF-radius map of the given
      property-bearing object (cortex, tesselation, mesh).
    sigma_colors(dict) yields an array of the color for the particular vertex property mapping
      that is given as dict.
    sigma_colors() yields a functor version of sigma_colors that can be called with one of the
      above arguments; note that this is useful precisely because the returned function
      preserves the arguments passed; e.g. sigma_colors(weighted=False)(mesh) is equivalent to
      sigma_colors(mesh, weighted=False).

    Note: radius_colors() is an alias for sigma_colors().

    The following options are accepted:
      * weighted (True) specifies whether to use weight as opacity.
      * weight_min (0.2) specifies that below this weight value, the curvature (or null color)
        should be plotted.
      * property (Ellipsis) specifies the specific property that should be used as the
        eccentricity value; if Ellipsis, will attempt to auto-detect this value.
      * weight (Ellipsis) specifies  the specific property that should be used as the weight value.
      * null_color ('curvature') specifies a color that should be used as the background.
    '''
    return retino_colors(vertex_sigma_color, *args, **kwargs) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:25,代碼來源:core.py

示例4: varea_colors

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def varea_colors(*args, **kwargs):
    '''
    varea_colors(obj) yields an array of colors for the visual area map of the given
      property-bearing object (cortex, tesselation, mesh).
    varea_colors(dict) yields an array of the color for the particular vertex property mapping
      that is given as dict.
    varea_colors() yields a functor version of varea_colors that can be called with one of the
      above arguments; note that this is useful precisely because the returned function
      preserves the arguments passed; e.g. varea_colors(weighted=False)(mesh) is equivalent to
      varea_colors(mesh, weighted=False).

    The following options are accepted:
      * weighted (True) specifies whether to use weight as opacity.
      * weight_min (0.2) specifies that below this weight value, the curvature (or null color)
        should be plotted.
      * property (Ellipsis) specifies the specific property that should be used as the
        eccentricity value; if Ellipsis, will attempt to auto-detect this value.
      * weight (Ellipsis) specifies  the specific property that should be used as the weight value.
      * null_color ('curvature') specifies a color that should be used as the background.
    '''
    return retino_colors(vertex_varea_color, *args, **kwargs) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:23,代碼來源:core.py

示例5: label_colors

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def label_colors(lbls, cmap=None):
    '''
    label_colors(labels) yields a dict object whose keys are the unique values in labels and whose
      values are the (r,g,b,a) colors that should be assigned to each label.
    label_colors(n) is equivalent to label_colors(range(n)).

    Note that this function uses a heuristic and is not guaranteed to be optimal in any way for any
    value of n--but it generally works well enough for most common purposes.
    
    The following optional arguments may be given:
      * cmap (default: None) specifies a colormap to use as a base. If this is None, then a varianct
        of 'hsv' is used.
    '''
    from neuropythy.graphics import label_cmap
    if pimms.is_int(lbls): lbls = np.arange(lbls)
    lbls0 = np.unique(lbls)
    lbls = np.arange(len(lbls0))
    cm = label_cmap(lbls, cmap=cmap)
    mx = float(len(lbls) - 1)
    m = {k:cm(l/mx) for (k,l) in zip(lbls0, lbls)}
    return m 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:23,代碼來源:labels.py

示例6: cmap

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def cmap(self, data=None):
        '''
        lblidx.cmap() yields a colormap for the given label index object that assumes that the data
          being plotted will be rescaled such that label 0 is 0 and the highest label value in the
          label index is equal to 1.
        lblidx.cmap(data) yields a colormap that will correctly color the labels given in data if
          data is scaled such that its minimum and maximum value are 0 and 1.
        '''
        import matplotlib.colors
        from_list = matplotlib.colors.LinearSegmentedColormap.from_list
        if data is None: return self.colormap
        data = np.asarray(data).flatten()
        (vmin,vmax) = (np.min(data), np.max(data))
        ii  = np.argsort(self.ids)
        ids = np.asarray(self.ids)[ii]
        if vmin == vmax:
            (vmin,vmax,ii) = (vmin-0.5, vmax+0.5, vmin)
            clr = self.color_lookup(ii)
            return from_list('label1', [(0, clr), (1, clr)])
        q   = (ids >= vmin) & (ids <= vmax)
        ids = ids[q]
        clrs = self.color_lookup(ids)
        vals = (ids - vmin) / (vmax - vmin)
        return from_list('label%d' % len(vals), list(zip(vals, clrs))) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:26,代碼來源:labels.py

示例7: getColor

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def getColor(self,name):
        if name.find("#") == 0:
            return(name)

        colors = mcolors.get_named_colors_mapping()

        color = None

        if name in colors:
            color = colors[name]
        elif name == "lightest":
            color = self.lightest
        elif name == "darkest":
            color = self.darkest

        return(color) 
開發者ID:sassoftware,項目名稱:python-esppy,代碼行數:18,代碼來源:tools.py

示例8: convertColormap

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def convertColormap(name):
    cmap = matplotlib.cm.get_cmap(name)
    norm = matplotlib.colors.Normalize(vmin = 0,vmax = 255)
    rgb = []
 
    for i in range(0, 255):
        k = matplotlib.colors.colorConverter.to_rgb(cmap(norm(i)))
        rgb.append(k)

    entries = 255

    h = 1.0 / (entries - 1)
    colorscale = []

    for k in range(entries):
        C = list(map(np.uint8,np.array(cmap(k * h)[:3]) * 255))
        colorscale.append([k * h,"rgb" + str((C[0], C[1], C[2]))])

    return(colorscale) 
開發者ID:sassoftware,項目名稱:python-esppy,代碼行數:21,代碼來源:tools.py

示例9: set_cmap

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def set_cmap(cmap):
    """
    Set the default colormap.  Applies to the current image if any.
    See help(colormaps) for more information.

    *cmap* must be a :class:`~matplotlib.colors.Colormap` instance, or
    the name of a registered colormap.

    See :func:`matplotlib.cm.register_cmap` and
    :func:`matplotlib.cm.get_cmap`.
    """
    cmap = cm.get_cmap(cmap)

    rc('image', cmap=cmap.name)
    im = gci()

    if im is not None:
        im.set_cmap(cmap)

    draw_if_interactive() 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:22,代碼來源:pyplot.py

示例10: hlines

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def hlines(y, xmin, xmax, colors='k', linestyles='solid', label='', hold=None,
           **kwargs):
    ax = gca()
    # allow callers to override the hold state by passing hold=True|False
    washold = ax.ishold()

    if hold is not None:
        ax.hold(hold)
    try:
        ret = ax.hlines(y, xmin, xmax, colors=colors, linestyles=linestyles,
                        label=label, **kwargs)
        draw_if_interactive()
    finally:
        ax.hold(washold)

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:21,代碼來源:pyplot.py

示例11: pie

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def pie(x, explode=None, labels=None, colors=None, autopct=None,
        pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None,
        radius=None, hold=None):
    ax = gca()
    # allow callers to override the hold state by passing hold=True|False
    washold = ax.ishold()

    if hold is not None:
        ax.hold(hold)
    try:
        ret = ax.pie(x, explode=explode, labels=labels, colors=colors,
                     autopct=autopct, pctdistance=pctdistance, shadow=shadow,
                     labeldistance=labeldistance, startangle=startangle,
                     radius=radius)
        draw_if_interactive()
    finally:
        ax.hold(washold)

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:24,代碼來源:pyplot.py

示例12: vlines

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def vlines(x, ymin, ymax, colors='k', linestyles='solid', label='', hold=None,
           **kwargs):
    ax = gca()
    # allow callers to override the hold state by passing hold=True|False
    washold = ax.ishold()

    if hold is not None:
        ax.hold(hold)
    try:
        ret = ax.vlines(x, ymin, ymax, colors=colors, linestyles=linestyles,
                        label=label, **kwargs)
        draw_if_interactive()
    finally:
        ax.hold(washold)

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:21,代碼來源:pyplot.py

示例13: eventplot

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def eventplot(positions, orientation='horizontal', lineoffsets=1, linelengths=1,
              linewidths=None, colors=None, linestyles='solid', hold=None,
              **kwargs):
    ax = gca()
    # allow callers to override the hold state by passing hold=True|False
    washold = ax.ishold()

    if hold is not None:
        ax.hold(hold)
    try:
        ret = ax.eventplot(positions, orientation=orientation,
                           lineoffsets=lineoffsets, linelengths=linelengths,
                           linewidths=linewidths, colors=colors,
                           linestyles=linestyles, **kwargs)
        draw_if_interactive()
    finally:
        ax.hold(washold)

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:24,代碼來源:pyplot.py

示例14: pie

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def pie(x, explode=None, labels=None, colors=None, autopct=None,
        pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None,
        radius=None, counterclock=True, wedgeprops=None, textprops=None,
        hold=None):
    ax = gca()
    # allow callers to override the hold state by passing hold=True|False
    washold = ax.ishold()

    if hold is not None:
        ax.hold(hold)
    try:
        ret = ax.pie(x, explode=explode, labels=labels, colors=colors,
                     autopct=autopct, pctdistance=pctdistance, shadow=shadow,
                     labeldistance=labeldistance, startangle=startangle,
                     radius=radius, counterclock=counterclock,
                     wedgeprops=wedgeprops, textprops=textprops)
        draw_if_interactive()
    finally:
        ax.hold(washold)

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:26,代碼來源:pyplot.py

示例15: plot_graph

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colors [as 別名]
def plot_graph(self, am, position=None, cls=None, fig_name='graph.png'):

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore")

            g = nx.from_numpy_matrix(am)

            if position is None:
                position=nx.drawing.circular_layout(g)

            fig = plt.figure()

            if cls is None:
                cls='r'
            else:
                # Make a user-defined colormap.
                cm1 = mcol.LinearSegmentedColormap.from_list("MyCmapName", ["r", "b"])

                # Make a normalizer that will map the time values from
                # [start_time,end_time+1] -> [0,1].
                cnorm = mcol.Normalize(vmin=0, vmax=1)

                # Turn these into an object that can be used to map time values to colors and
                # can be passed to plt.colorbar().
                cpick = cm.ScalarMappable(norm=cnorm, cmap=cm1)
                cpick.set_array([])
                cls = cpick.to_rgba(cls)
                plt.colorbar(cpick, ax=fig.add_subplot(111))


            nx.draw(g, pos=position, node_color=cls, ax=fig.add_subplot(111))

            fig.savefig(os.path.join(self.plotdir, fig_name)) 
開發者ID:priba,項目名稱:nmp_qc,代碼行數:35,代碼來源:Plotter.py


注:本文中的matplotlib.colors方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。