本文整理匯總了Python中matplotlib.colors.SymLogNorm方法的典型用法代碼示例。如果您正苦於以下問題:Python colors.SymLogNorm方法的具體用法?Python colors.SymLogNorm怎麽用?Python colors.SymLogNorm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.colors
的用法示例。
在下文中一共展示了colors.SymLogNorm方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_SymLogNorm
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import SymLogNorm [as 別名]
def test_SymLogNorm():
"""
Test SymLogNorm behavior
"""
norm = mcolors.SymLogNorm(3, vmax=5, linscale=1.2)
vals = np.array([-30, -1, 2, 6], dtype=np.float)
normed_vals = norm(vals)
expected = [0., 0.53980074, 0.826991, 1.02758204]
assert_array_almost_equal(normed_vals, expected)
_inverse_tester(norm, vals)
_scalar_tester(norm, vals)
_mask_tester(norm, vals)
# Ensure that specifying vmin returns the same result as above
norm = mcolors.SymLogNorm(3, vmin=-30, vmax=5, linscale=1.2)
normed_vals = norm(vals)
assert_array_almost_equal(normed_vals, expected)
示例2: test_SymLogNorm
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import SymLogNorm [as 別名]
def test_SymLogNorm():
"""
Test SymLogNorm behavior
"""
norm = mcolors.SymLogNorm(3, vmax=5, linscale=1.2)
vals = np.array([-30, -1, 2, 6], dtype=float)
normed_vals = norm(vals)
expected = [0., 0.53980074, 0.826991, 1.02758204]
assert_array_almost_equal(normed_vals, expected)
_inverse_tester(norm, vals)
_scalar_tester(norm, vals)
_mask_tester(norm, vals)
# Ensure that specifying vmin returns the same result as above
norm = mcolors.SymLogNorm(3, vmin=-30, vmax=5, linscale=1.2)
normed_vals = norm(vals)
assert_array_almost_equal(normed_vals, expected)
示例3: norm
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import SymLogNorm [as 別名]
def norm(self, norm):
if norm == "lin":
self.pixels.norm = Normalize()
elif norm == "log":
self.pixels.norm = LogNorm()
self.pixels.autoscale() # this is to handle matplotlib bug #5424
elif norm == "symlog":
self.pixels.norm = SymLogNorm(linthresh=1.0)
self.pixels.autoscale()
elif isinstance(norm, Normalize):
self.pixels.norm = norm
else:
raise ValueError(
"Unsupported norm: '{}', options are 'lin',"
"'log','symlog', or a matplotlib Normalize object".format(norm)
)
self.update(force=True)
self.pixels.autoscale()
示例4: set_colourbar_norm_type
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import SymLogNorm [as 別名]
def set_colourbar_norm_type(self, colourbar_norm_type):
if colourbar_norm_type == "SymLogNorm":
norm = _mcolors.SymLogNorm(linthresh=0.3, vmin=self._vmin, vmax=self._vmax)
elif colourbar_norm_type is None:
norm = None
else:
raise NotImplementedError("That type of normalisation is not coded in yet..")
norm = None
return norm
示例5: build_canvas
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import SymLogNorm [as 別名]
def build_canvas(self):
# get plot axes and data
x = self.data.data[0]
y = self.data.data[1]
# build color map norm
if self.cb_scale == "log":
self.cb_norm = clr.LogNorm(vmin=self.vmin, vmax=self.vmax)
elif self.cb_scale == "symlog":
self.cb_norm = clr.SymLogNorm(
vmin=self.vmin,
vmax=self.vmax,
linthresh=self.cb_linthresh,
base=10,
)
else:
self.cb_norm = clr.Normalize(vmin=self.vmin, vmax=self.vmax)
# build plot
self.h = self.axes.ax.scatter(
x,
y,
s=self.s,
c=self.c,
marker=self.marker,
alpha=self.alpha,
label=self.label,
cmap=self.cb_map,
norm=self.cb_norm
# antialiased=self.antialiased,
)
if self.has_cb:
self.axes.init_colorbar(plot=self)
示例6: _get_ticker_locator_formatter
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import SymLogNorm [as 別名]
def _get_ticker_locator_formatter(self):
"""
This code looks at the norm being used by the colorbar
and decides what locator and formatter to use. If ``locator`` has
already been set by hand, it just returns
``self.locator, self.formatter``.
"""
locator = self.locator
formatter = self.formatter
if locator is None:
if self.boundaries is None:
if isinstance(self.norm, colors.NoNorm):
nv = len(self._values)
base = 1 + int(nv / 10)
locator = ticker.IndexLocator(base=base, offset=0)
elif isinstance(self.norm, colors.BoundaryNorm):
b = self.norm.boundaries
locator = ticker.FixedLocator(b, nbins=10)
elif isinstance(self.norm, colors.LogNorm):
locator = _ColorbarLogLocator(self)
elif isinstance(self.norm, colors.SymLogNorm):
# The subs setting here should be replaced
# by logic in the locator.
locator = ticker.SymmetricalLogLocator(
subs=np.arange(1, 10),
linthresh=self.norm.linthresh,
base=10)
else:
if mpl.rcParams['_internal.classic_mode']:
locator = ticker.MaxNLocator()
else:
locator = _ColorbarAutoLocator(self)
else:
b = self._boundaries[self._inside]
locator = ticker.FixedLocator(b, nbins=10)
_log.debug('locator: %r', locator)
return locator, formatter
示例7: test_SymLogNorm_colorbar
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import SymLogNorm [as 別名]
def test_SymLogNorm_colorbar():
"""
Test un-called SymLogNorm in a colorbar.
"""
norm = mcolors.SymLogNorm(0.1, vmin=-1, vmax=1, linscale=1)
fig = plt.figure()
cbar = mcolorbar.ColorbarBase(fig.add_subplot(111), norm=norm)
plt.close(fig)
示例8: test_SymLogNorm_single_zero
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import SymLogNorm [as 別名]
def test_SymLogNorm_single_zero():
"""
Test SymLogNorm to ensure it is not adding sub-ticks to zero label
"""
fig = plt.figure()
norm = mcolors.SymLogNorm(1e-5, vmin=-1, vmax=1)
cbar = mcolorbar.ColorbarBase(fig.add_subplot(111), norm=norm)
ticks = cbar.get_ticks()
assert sum(ticks == 0) == 1
plt.close(fig)
示例9: test_ndarray_subclass_norm
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import SymLogNorm [as 別名]
def test_ndarray_subclass_norm(recwarn):
# Emulate an ndarray subclass that handles units
# which objects when adding or subtracting with other
# arrays. See #6622 and #8696
class MyArray(np.ndarray):
def __isub__(self, other):
raise RuntimeError
def __add__(self, other):
raise RuntimeError
data = np.arange(-10, 10, 1, dtype=float)
data.shape = (10, 2)
mydata = data.view(MyArray)
for norm in [mcolors.Normalize(), mcolors.LogNorm(),
mcolors.SymLogNorm(3, vmax=5, linscale=1),
mcolors.Normalize(vmin=mydata.min(), vmax=mydata.max()),
mcolors.SymLogNorm(3, vmin=mydata.min(), vmax=mydata.max()),
mcolors.PowerNorm(1)]:
assert_array_equal(norm(mydata), norm(data))
fig, ax = plt.subplots()
ax.imshow(mydata, norm=norm)
fig.canvas.draw()
assert len(recwarn) == 0
recwarn.clear()
示例10: plot
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import SymLogNorm [as 別名]
def plot(self):
'''Replot the colorbar.'''
if self.cmap is None:
return
self.ax.cla()
self.cax.cla()
cmap = self.cmap
if 'norm' not in cmap or cmap['norm'] is None:
self.norm_type.setCurrentIndex(0)
else:
norm_name = cmap['norm'].__class__.__name__
if norm_name == 'Normalize':
self.norm_type.setCurrentIndex(1)
elif norm_name == 'LogNorm':
self.norm_type.setCurrentIndex(2)
elif norm_name == 'SymLogNorm':
self.norm_type.setCurrentIndex(3)
elif norm_name == 'PowerNorm':
self.norm_type.setCurrentIndex(4)
elif norm_name == 'BoundaryNorm':
self.norm_type.setCurrentIndex(5)
if cmap is not None:
if 'norm' in cmap:
norm = cmap['norm']
else:
norm = None
im = self.ax.imshow(gradient, aspect='auto', cmap=cmap['cmap'],
vmin=cmap['vmin'], vmax=cmap['vmax'],
norm=norm)
plt.colorbar(im, cax=self.cax)
self.canvas.draw()
示例11: update_colormap
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import SymLogNorm [as 別名]
def update_colormap(self):
'''Get colormap from GUI.'''
self.cmap['lock'] = self.lock_box.isChecked()
idx = self.norm_type.currentIndex()
self.cmap['vmin'] = float(self.ent_vmin.text())
self.cmap['vmax'] = float(self.ent_vmax.text())
if idx == 0:
self.cmap['norm'] = None
elif idx == 1:
self.cmap['norm'] = colors.Normalize(vmin=self.cmap['vmin'],
vmax=self.cmap['vmax'])
elif idx == 2:
self.cmap['norm'] = colors.LogNorm(vmin=self.cmap['vmin'],
vmax=self.cmap['vmax'])
elif idx == 3:
self.cmap['norm'] = colors.SymLogNorm(
linthresh=float(self.ent_linthresh.text()),
linscale=float(self.ent_linscale.text()),
vmin=self.cmap['vmin'],
vmax=self.cmap['vmax'])
elif idx == 4:
self.cmap['norm'] = colors.PowerNorm(
gamma=float(self.ent_gamma.text()),
vmin=self.cmap['vmin'],
vmax=self.cmap['vmax'])
elif idx == 5:
bounds = self.get_bounds()
self.cmap['norm'] = colors.BoundaryNorm(bounds,
ncolors=256)
self.plot()
示例12: show_state_map
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import SymLogNorm [as 別名]
def show_state_map(title, agent_name, values, state_limits, v_max=None):
fig, ax = plt.subplots()
img = ax.imshow(values.T,
extent=(-state_limits, state_limits, -state_limits, state_limits),
norm=colors.SymLogNorm(linthresh=1, linscale=1, vmax=v_max),
cmap=plt.cm.coolwarm)
fig.colorbar(img, ax=ax)
plt.grid(False)
plt.title(rename(agent_name))
plt.savefig(out / "{}_{}.pdf".format(title, agent_name))
plt.show()
示例13: __plot_matrix
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import SymLogNorm [as 別名]
def __plot_matrix(self, genome_range):
start, end = genome_range.start, genome_range.end
ax = self.ax
arr = self.matrix
if isinstance(self.properties['color'], str):
cmap = plt.get_cmap(self.properties['color'])
else:
cmap = self.properties['color']
cmap.set_bad("white")
cmap.set_under("white")
c_min_1, c_max_1 = self.hic1.matrix_val_range
c_min_2, c_max_2 = self.hic2.matrix_val_range
self.small_value = ( abs(c_min_1) + abs(c_min_2) ) / 2
if self.properties['norm'] == 'log':
a_ = np.log10(c_max_1)
b_ = np.log10(c_max_2)
c_ = np.log10(self.small_value)
ra_ = abs(c_ - a_) + 0.7
rb_ = abs(c_ - b_) + 0.7
midpoint = (ra_ / (ra_ + rb_))
else:
midpoint = (abs(c_max_2) / (abs(c_max_1) + abs(c_max_2)))
cmap = shiftedColorMap(cmap, midpoint=midpoint)
img = ax.matshow(arr, cmap=cmap,
extent=(start, end, end, start),
aspect='auto')
if self.properties['norm'] == 'log':
img.set_norm(colors.SymLogNorm(linthresh=self.small_value, linscale=1, vmin=-c_max_1, vmax=c_max_2))
else:
img.set_norm(colors.Normalize(vmin=-c_max_1, vmax=c_max_2))
return img
示例14: plot_embedding
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import SymLogNorm [as 別名]
def plot_embedding(spec, path):
spec = spec.transpose(1, 0) # (seq_len, feature_dim) -> (feature_dim, seq_len)
plt.gcf().clear()
plt.figure(figsize=(12, 3))
plt.pcolormesh(spec, norm=SymLogNorm(linthresh=1e-3))
plt.colorbar()
plt.tight_layout()
plt.savefig(path, dpi=300, format="png")
plt.close()
開發者ID:andi611,項目名稱:Self-Supervised-Speech-Pretraining-and-Representation-Learning,代碼行數:11,代碼來源:audio.py
示例15: test_ndarray_subclass_norm
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import SymLogNorm [as 別名]
def test_ndarray_subclass_norm(recwarn):
# Emulate an ndarray subclass that handles units
# which objects when adding or subtracting with other
# arrays. See #6622 and #8696
class MyArray(np.ndarray):
def __isub__(self, other):
raise RuntimeError
def __add__(self, other):
raise RuntimeError
data = np.arange(-10, 10, 1, dtype=float)
data.shape = (10, 2)
mydata = data.view(MyArray)
for norm in [mcolors.Normalize(), mcolors.LogNorm(),
mcolors.SymLogNorm(3, vmax=5, linscale=1),
mcolors.Normalize(vmin=mydata.min(), vmax=mydata.max()),
mcolors.SymLogNorm(3, vmin=mydata.min(), vmax=mydata.max()),
mcolors.PowerNorm(1)]:
assert_array_equal(norm(mydata), norm(data))
fig, ax = plt.subplots()
ax.imshow(mydata, norm=norm)
fig.canvas.draw()
if isinstance(norm, mcolors.PowerNorm):
assert len(recwarn) == 1
warn = recwarn.pop(UserWarning)
assert ('Power-law scaling on negative values is ill-defined'
in str(warn.message))
else:
assert len(recwarn) == 0
recwarn.clear()