當前位置: 首頁>>代碼示例>>Python>>正文


Python colors.Normalize方法代碼示例

本文整理匯總了Python中matplotlib.colors.Normalize方法的典型用法代碼示例。如果您正苦於以下問題:Python colors.Normalize方法的具體用法?Python colors.Normalize怎麽用?Python colors.Normalize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.colors的用法示例。


在下文中一共展示了colors.Normalize方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: update

# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Normalize [as 別名]
def update(self, xPhys, u, title=None):
        """Plot to screen"""
        self.im.set_array(-xPhys.reshape((self.nelx, self.nely)).T)
        stress = self.stress_calculator.calculate_stress(xPhys, u, self.nu)
        # self.stress_calculator.calculate_fdiff_stress(xPhys, u, self.nu)
        self.myColorMap.set_norm(colors.Normalize(vmin=0, vmax=max(stress)))
        stress_rgba = self.myColorMap.to_rgba(stress)
        stress_rgba[:, :, 3] = xPhys.reshape(-1, 1)
        self.stress_im.set_array(np.swapaxes(
            stress_rgba.reshape((self.nelx, self.nely, 4)), 0, 1))
        self.fig.canvas.draw()
        self.fig.canvas.flush_events()
        if title is not None:
            plt.title(title)
        else:
            plt.xlabel("Max stress = {:.2f}".format(max(stress)[0]))
        plt.pause(0.01) 
開發者ID:zfergus,項目名稱:fenics-topopt,代碼行數:19,代碼來源:stress_gui.py

示例2: make_coherence_cmap

# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Normalize [as 別名]
def make_coherence_cmap(
    mapname="inferno", vmin=1e-5, vmax=1, ncolors=64, outname="coherence-cog.cpt"
):
    """Write default colormap (coherence-cog.cpt) for isce coherence images.

    Parameters
    ----------
    mapname : str
        matplotlib colormap name
    vmin : float
        data value mapped to lower end of colormap
    vmax : float
        data value mapped to upper end of colormap
    ncolors : int
        number of discrete mapped values between vmin and vmax

    """
    cmap = plt.get_cmap(mapname)
    cNorm = colors.Normalize(vmin=vmin, vmax=vmax)
    scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cmap)
    vals = np.linspace(vmin, vmax, ncolors, endpoint=True)

    write_cmap(outname, vals, scalarMap)

    return outname 
開發者ID:scottyhq,項目名稱:dinosar,代碼行數:27,代碼來源:__init__.py

示例3: _shade_colors

# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Normalize [as 別名]
def _shade_colors(self, color, normals):
        '''
        Shade *color* using normal vectors given by *normals*.
        *color* can also be an array of the same length as *normals*.
        '''

        shade = np.array([np.dot(n / proj3d.mod(n), [-1, -1, 0.5])
                          for n in normals])
        mask = ~np.isnan(shade)

        if len(shade[mask]) > 0:
            norm = Normalize(min(shade[mask]), max(shade[mask]))
            color = colorConverter.to_rgba_array(color)
            # shape of color should be (M, 4) (where M is number of faces)
            # shape of shade should be (M,)
            # colors should have final shape of (M, 4)
            alpha = color[:, 3]
            colors = (0.5 + norm(shade)[:, np.newaxis] * 0.5) * color
            colors[:, 3] = alpha
        else:
            colors = np.asanyarray(color).copy()

        return colors 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:25,代碼來源:axes3d.py

示例4: graph_colors

# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Normalize [as 別名]
def graph_colors(nx_graph, vmin=0, vmax=7):
    cnorm = mcol.Normalize(vmin=vmin, vmax=vmax)
    cpick = cm.ScalarMappable(norm=cnorm, cmap='viridis')
    cpick.set_array([])
    val_map = {}
    for k, v in nx.get_node_attributes(nx_graph, 'attr_name').items():
        val_map[k] = cpick.to_rgba(v)
    colors = []
    for node in nx_graph.nodes():
        colors.append(val_map[node])
    return colors

##############################################################################
# Generate data
# -------------

#%% circular dataset
# We build a dataset of noisy circular graphs.
# Noise is added on the structures by random connections and on the features by gaussian noise. 
開發者ID:PythonOT,項目名稱:POT,代碼行數:21,代碼來源:plot_barycenter_fgw.py

示例5: flow_legend

# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Normalize [as 別名]
def flow_legend():
    """
    show quiver plot to indicate how arrows are colored in the flow() method.
    https://stackoverflow.com/questions/40026718/different-colours-for-arrows-in-quiver-plot
    """
    ph = np.linspace(0, 2*np.pi, 13)
    x = np.cos(ph)
    y = np.sin(ph)
    u = np.cos(ph)
    v = np.sin(ph)
    colors = np.arctan2(u, v)

    norm = Normalize()
    norm.autoscale(colors)
    # we need to normalize our colors array to match it colormap domain
    # which is [0, 1]

    colormap = cm.winter

    plt.figure(figsize=(6, 6))
    plt.xlim(-2, 2)
    plt.ylim(-2, 2)
    plt.quiver(x, y, u, v, color=colormap(norm(colors)),  angles='xy', scale_units='xy', scale=1)
    plt.show() 
開發者ID:adalca,項目名稱:neuron,代碼行數:26,代碼來源:plot.py

示例6: _shade_colors

# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Normalize [as 別名]
def _shade_colors(self, color, normals):
        '''
        Shade *color* using normal vectors given by *normals*.
        *color* can also be an array of the same length as *normals*.
        '''

        shade = np.array([np.dot(n / proj3d.mod(n), [-1, -1, 0.5])
                          if proj3d.mod(n) else np.nan
                          for n in normals])
        mask = ~np.isnan(shade)

        if len(shade[mask]) > 0:
            norm = Normalize(min(shade[mask]), max(shade[mask]))
            shade[~mask] = min(shade[mask])
            color = mcolors.to_rgba_array(color)
            # shape of color should be (M, 4) (where M is number of faces)
            # shape of shade should be (M,)
            # colors should have final shape of (M, 4)
            alpha = color[:, 3]
            colors = (0.5 + norm(shade)[:, np.newaxis] * 0.5) * color
            colors[:, 3] = alpha
        else:
            colors = np.asanyarray(color).copy()

        return colors 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:27,代碼來源:axes3d.py

示例7: update_likely_plot

# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Normalize [as 別名]
def update_likely_plot(self,ax):
        lik = self.likelihood.cpu().detach().numpy()
        # if lik.min() == lik.max():
        #     lik *= 0
        # lik -= lik.min()
        # lik /= lik.max()
        lik, side = square_clock(lik, self.grid_dirs)
        # lik=self.circular_placement(lik, self.grid_dirs)
        # lik = lik.reshape(self.grid_rows*self.grid_dirs,self.grid_cols) 
        # lik = np.swapaxes(lik,0,1)
        # lik = lik.reshape(self.grid_rows, self.grid_dirs*self.grid_cols)
        # lik = np.concatenate((lik[0,:,:],lik[1,:,:],lik[2,:,:],lik[3,:,:]), axis=1)
        if self.obj_lik == None:
            self.obj_lik = ax.imshow(lik,interpolation='nearest')
            ax.grid()
            ticks = np.linspace(0,self.grid_rows*side, side,endpoint=False)-0.5
            ax.set_yticks(ticks)
            ax.set_xticks(ticks)
            ax.tick_params(axis='y', labelleft='off')
            ax.tick_params(axis='x', labelbottom='off')
            ax.tick_params(bottom="off", left="off")
            ax.set_title('Likelihood from NN')
        else:
            self.obj_lik.set_data(lik)
        self.obj_lik.set_norm(norm = cm.Normalize().autoscale(lik)) 
開發者ID:montrealrobotics,項目名稱:dal,代碼行數:27,代碼來源:dal.py

示例8: update_gtl_plot

# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Normalize [as 別名]
def update_gtl_plot(self,ax):
        # gtl = self.gt_likelihood.cpu().detach().numpy()
        gtl = self.gt_likelihood
        gtl, side = square_clock(gtl, self.grid_dirs)
        if self.obj_gtl == None:
            self.obj_gtl = ax.imshow(gtl,interpolation='nearest')
            ax.grid()
            ticks = np.linspace(0,self.grid_rows*side, side,endpoint=False)-0.5
            ax.set_yticks(ticks)
            ax.set_xticks(ticks)
            ax.tick_params(axis='y', labelleft='off')
            ax.tick_params(axis='x', labelbottom='off')
            ax.tick_params(bottom="off", left="off")
            ax.set_title('Target Likelihood')
        else:
            self.obj_gtl.set_data(gtl)
        self.obj_gtl.set_norm(norm = cm.Normalize().autoscale(gtl)) 
開發者ID:montrealrobotics,項目名稱:dal,代碼行數:19,代碼來源:dal.py

示例9: update_likely_plot

# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Normalize [as 別名]
def update_likely_plot(self,ax):
        lik = self.likelihood.cpu().detach().numpy()
        # if lik.min() == lik.max():
        #     lik *= 0
        # lik -= lik.min()
        # lik /= lik.max()
        lik, side = self.square_clock(lik, self.grid_dirs)
        # lik=self.circular_placement(lik, self.grid_dirs)
        # lik = lik.reshape(self.grid_rows*self.grid_dirs,self.grid_cols) 
        # lik = np.swapaxes(lik,0,1)
        # lik = lik.reshape(self.grid_rows, self.grid_dirs*self.grid_cols)
        # lik = np.concatenate((lik[0,:,:],lik[1,:,:],lik[2,:,:],lik[3,:,:]), axis=1)
        if self.obj_lik == None:
            self.obj_lik = ax.imshow(lik,interpolation='nearest')
            ax.grid()
            ticks = np.linspace(0,self.grid_rows*side, side,endpoint=False)-0.5
            ax.set_yticks(ticks)
            ax.set_xticks(ticks)
            ax.tick_params(axis='y', labelleft='off')
            ax.tick_params(axis='x', labelbottom='off')
            ax.tick_params(bottom="off", left="off")
            ax.set_title('Likelihood from NN')
        else:
            self.obj_lik.set_data(lik)
        self.obj_lik.set_norm(norm = cm.Normalize().autoscale(lik)) 
開發者ID:montrealrobotics,項目名稱:dal,代碼行數:27,代碼來源:dal_ros_aml.py

示例10: update_prior_plot

# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Normalize [as 別名]
def update_prior_plot(self,ax):

        bel = np.copy(self.prior)
        bel,side = self.square_clock(bel, self.grid_dirs)
        if self.obj_bel_prior == None:
            self.obj_bel_prior = ax.imshow(bel,interpolation='nearest')
            ax.grid()
            ticks = np.linspace(0,self.grid_rows*side, side,endpoint=False)-0.5
            ax.set_yticks(ticks)
            ax.set_xticks(ticks)
            ax.tick_params(axis='y', labelleft='off')
            ax.tick_params(axis='x', labelbottom='off')
            ax.tick_params(bottom="off", left="off")
            ax.set_title('Prior (%.3f)'%self.prior.max())
        else:
            self.obj_bel_prior.set_data(bel)
            ax.set_title('Prior (%.3f)'%self.prior.max())

        self.obj_bel_prior.set_norm(norm = cm.Normalize().autoscale(bel)) 
開發者ID:montrealrobotics,項目名稱:dal,代碼行數:21,代碼來源:dal_ros_aml.py

示例11: update_gtl_plot

# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Normalize [as 別名]
def update_gtl_plot(self,ax):
        # gtl = self.gt_likelihood.cpu().detach().numpy()
        gtl = self.gt_likelihood
        gtl, side = self.square_clock(gtl, self.grid_dirs)
        if self.obj_gtl == None:
            self.obj_gtl = ax.imshow(gtl,interpolation='nearest')
            ax.grid()
            ticks = np.linspace(0,self.grid_rows*side, side,endpoint=False)-0.5
            ax.set_yticks(ticks)
            ax.set_xticks(ticks)
            ax.tick_params(axis='y', labelleft='off')
            ax.tick_params(axis='x', labelbottom='off')
            ax.tick_params(bottom="off", left="off")
            ax.set_title('Target Likelihood')
        else:
            self.obj_gtl.set_data(gtl)
        self.obj_gtl.set_norm(norm = cm.Normalize().autoscale(gtl)) 
開發者ID:montrealrobotics,項目名稱:dal,代碼行數:19,代碼來源:dal_ros_aml.py

示例12: test_Normalize

# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Normalize [as 別名]
def test_Normalize():
    norm = mcolors.Normalize()
    vals = np.arange(-10, 10, 1, dtype=float)
    _inverse_tester(norm, vals)
    _scalar_tester(norm, vals)
    _mask_tester(norm, vals)

    # Handle integer input correctly (don't overflow when computing max-min,
    # i.e. 127-(-128) here).
    vals = np.array([-128, 127], dtype=np.int8)
    norm = mcolors.Normalize(vals.min(), vals.max())
    assert_array_equal(np.asarray(norm(vals)), [0, 1])

    # Don't lose precision on longdoubles (float128 on Linux):
    # for array inputs...
    vals = np.array([1.2345678901, 9.8765432109], dtype=np.longdouble)
    norm = mcolors.Normalize(vals.min(), vals.max())
    assert_array_equal(np.asarray(norm(vals)), [0, 1])
    # and for scalar ones.
    eps = np.finfo(np.longdouble).resolution
    norm = plt.Normalize(1, 1 + 100 * eps)
    # This returns exactly 0.5 when longdouble is extended precision (80-bit),
    # but only a value close to it when it is quadruple precision (128-bit).
    assert 0 < norm(1 + 50 * eps) < 1 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:26,代碼來源:test_colors.py

示例13: _shade_colors

# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Normalize [as 別名]
def _shade_colors(self, color, normals):
        '''
        Shade *color* using normal vectors given by *normals*.
        *color* can also be an array of the same length as *normals*.
        '''

        shade = np.array([np.dot(n / proj3d.mod(n), [-1, -1, 0.5])
                          if proj3d.mod(n) else np.nan
                          for n in normals])
        mask = ~np.isnan(shade)

        if len(shade[mask]) > 0:
            norm = Normalize(min(shade[mask]), max(shade[mask]))
            shade[~mask] = min(shade[mask])
            color = colorConverter.to_rgba_array(color)
            # shape of color should be (M, 4) (where M is number of faces)
            # shape of shade should be (M,)
            # colors should have final shape of (M, 4)
            alpha = color[:, 3]
            colors = (0.5 + norm(shade)[:, np.newaxis] * 0.5) * color
            colors[:, 3] = alpha
        else:
            colors = np.asanyarray(color).copy()

        return colors 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:27,代碼來源:axes3d.py

示例14: plot_colormap

# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Normalize [as 別名]
def plot_colormap(cmap, continuous=True, discrete=True, ndisc=9):
    """Make a figure displaying the color map in continuous and/or discrete form
    """
    nplots = int(continuous) + int(discrete)
    fig, axx = plt.subplots(figsize=(6,.5*nplots), nrows=nplots, frameon=False)
    axx = np.asarray(axx)
    i=0
    if continuous:
        norm = mcolors.Normalize(vmin=0, vmax=1)
        ColorbarBase(axx.flat[i], cmap=cmap, norm=norm, orientation='horizontal') ; i+=1
    if discrete:
        colors = cmap(np.linspace(0, 1, ndisc))
        cmap_d = mcolors.ListedColormap(colors, name=cmap.name)
        norm = mcolors.BoundaryNorm(np.linspace(0, 1, ndisc+1), len(colors))
        ColorbarBase(axx.flat[i], cmap=cmap_d, norm=norm, orientation='horizontal')
    for ax in axx.flat:
        ax.set_axis_off()
    fig.text(0.95, 0.5, cmap.name, va='center', ha='left', fontsize=12) 
開發者ID:j08lue,項目名稱:pycpt,代碼行數:20,代碼來源:display.py

示例15: norm

# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Normalize [as 別名]
def norm(self, norm):

        if norm == "lin":
            self.pixels.norm = Normalize()
        elif norm == "log":
            self.pixels.norm = LogNorm()
            self.pixels.autoscale()  # this is to handle matplotlib bug #5424
        elif norm == "symlog":
            self.pixels.norm = SymLogNorm(linthresh=1.0)
            self.pixels.autoscale()
        elif isinstance(norm, Normalize):
            self.pixels.norm = norm
        else:
            raise ValueError(
                "Unsupported norm: '{}', options are 'lin',"
                "'log','symlog', or a matplotlib Normalize object".format(norm)
            )

        self.update(force=True)
        self.pixels.autoscale() 
開發者ID:cta-observatory,項目名稱:ctapipe,代碼行數:22,代碼來源:mpl_camera.py


注:本文中的matplotlib.colors.Normalize方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。