当前位置: 首页>>代码示例>>Python>>正文


Python LinearSegmentedColormap.from_list方法代码示例

本文整理汇总了Python中matplotlib.colors.LinearSegmentedColormap.from_list方法的典型用法代码示例。如果您正苦于以下问题:Python LinearSegmentedColormap.from_list方法的具体用法?Python LinearSegmentedColormap.from_list怎么用?Python LinearSegmentedColormap.from_list使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.colors.LinearSegmentedColormap的用法示例。


在下文中一共展示了LinearSegmentedColormap.from_list方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: read_color_table

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def read_color_table(color_file):
    '''
    The method for reading the color file.
    '''
    colors = []
    levels = []
    if exists(color_file) is False:
        raise Exception("Color file " + color_file + " does not exist")
    fp = open(color_file, "r")
    for line in fp:
        if line.find('#') == -1 and line.find('/') == -1:
            entry = line.split()
            levels.append(eval(entry[0]))
            colors.append((int(entry[1])/255.,int(entry[2])/255.,int(entry[3])/255.))
       
    fp.close()

    cmap = LinearSegmentedColormap.from_list("my_colormap",colors, N=len(levels), gamma=1.0)
    
    return levels, cmap 
开发者ID:rveciana,项目名称:BasemapTutorial,代码行数:22,代码来源:colortable.py

示例2: colors2cmap

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def colors2cmap(*args, name=None):
    """Create a colormap from a list of given colors.

    Parameters:
        *args: Arbitrary number of colors (Named color, HEX or RGB).
        name (str): Name with which the colormap is registered.

    Returns:
        LinearSegmentedColormap.

    Examples:
        >>> colors2cmap('darkorange', 'white', 'darkgreen', name='test')
    """
    if len(args) < 2:
        raise Exception("Give at least two colors.")

    cmap_data = [_to_hex(c) for c in args]
    cmap = colors.LinearSegmentedColormap.from_list(name, cmap_data)
    plt.register_cmap(name, cmap)

    return cmap 
开发者ID:atmtools,项目名称:typhon,代码行数:23,代码来源:common.py

示例3: get_dark_cmaps

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def get_dark_cmaps():
    """Generate dark-themed colormaps for eye-friendly visualization.

    Returns
    -------
    tuple
        Two matplotlib colormaps. The first color map is for +/- image data
        while the second is intended for strictly positive valued images.
    """
    from matplotlib.colors import LinearSegmentedColormap
    field_cols=['#3d9aff', '#111111', '#ff3d63']
    field_cmap=LinearSegmentedColormap.from_list('field_cmap', field_cols)

    struct_cols=['#212730', '#bcccdb']
    struct_cmap=LinearSegmentedColormap.from_list('struct_cmap', struct_cols)

    return field_cmap, struct_cmap 
开发者ID:anstmichaels,项目名称:emopt,代码行数:19,代码来源:misc.py

示例4: blue_red_colormap

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def blue_red_colormap(size=100, reverse=False, white_padding=1, ):
    size = size - (size % 4)
    ll = size // 4
    clist = []
    s1 = [0.5 + 0.5 / ll * x for x in range(ll)]
    s2 = [1.0 / ll * x for x in range(ll)]
    for x in s1:
        clist.append([0.0, 0.0, x])
    for x in s2:
        clist.append([x, x, 1.0])
    for x in range(white_padding):
        clist.append([1.0, 1.0, 1.0])
    for x in range(ll):
        clist.append([1.0, s2[-x - 1], s2[-x - 1]])
    for x in range(ll):
        clist.append([s1[-x - 1], 0.0, 0.0])
    if reverse:
        clist = clist[::-1]

    from matplotlib.colors import LinearSegmentedColormap
    cmap = LinearSegmentedColormap.from_list('BuRd', clist)
    return cmap 
开发者ID:jweyn,项目名称:DLWP,代码行数:24,代码来源:util.py

示例5: rgb_colormap

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def rgb_colormap(color='blue', size=100, reverse=False, white_padding=1, ):
    ll = size - white_padding
    clist = []
    r = 1
    g = 1
    b = 1
    if color == 'red':
        r = 0.5
    elif color == 'green':
        g = 0.5
    elif color == 'blue':
        b = 0.5
    else:
        raise ValueError('Select "red", "green", or "blue" for color.')
    for x in range(white_padding):
        clist.append([1.0, 1.0, 1.0])
    for x in range(white_padding, size, 1):
        y = x - white_padding
        clist.append([1.0 - 1.0 * r * y / ll, 1.0 - 1.0 * g * y / ll, 1.0 - 1.0 * b * y / ll])
    if reverse:
        clist = clist[::-1]

    cmap = LinearSegmentedColormap.from_list(color, clist)
    return cmap 
开发者ID:jweyn,项目名称:DLWP,代码行数:26,代码来源:util.py

示例6: _register_cmap_clip

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def _register_cmap_clip(name, original_cmap, alpha):
    """Create a color map with "over" and "under" values."""
    from matplotlib.colors import LinearSegmentedColormap
    cdata = _plt.cm.datad[original_cmap]
    if isinstance(cdata, dict):
        cmap = LinearSegmentedColormap(name, cdata)
    else:
        cmap = LinearSegmentedColormap.from_list(name, cdata)
    cmap.set_over([alpha * c + 1 - alpha for c in cmap(1.0)[:3]])
    cmap.set_under([alpha * c + 1 - alpha for c in cmap(0.0)[:3]])
    _plt.cm.register_cmap(cmap=cmap)


# The 'coolwarm' colormap is based on the paper
# "Diverging Color Maps for Scientific Visualization" by Kenneth Moreland
# http://www.sandia.gov/~kmorel/documents/ColorMaps/ 
开发者ID:sfstoolbox,项目名称:sfs-python,代码行数:18,代码来源:plot2d.py

示例7: make_colormap

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def make_colormap(color_palette, N=256, gamma=1.0):
    """
    Create a linear colormap from a color palette.

    Parameters
    ----------

    color_palette : str, list, or dict
        A color string, list of color strings, or color palette dict

    Returns
    -------
    cmap : LinearSegmentedColormap
        A colormap object based on color_palette using linear segments.

    """
    colors = extract_palette(color_palette)
    rgb = map(hex2rgb, colors)
    return LinearSegmentedColormap.from_list('custom', list(rgb),
                                             N=N, gamma=1.0) 
开发者ID:msmbuilder,项目名称:msmexplorer,代码行数:22,代码来源:utils.py

示例8: cmap2rgba

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def cmap2rgba(cmap=None, N=None, interpolate=True):
    """Convert a colormap into a list of RGBA values.

    Parameters:
        cmap (str): Name of a registered colormap.
        N (int): Number of RGBA-values to return.
            If ``None`` use the number of colors defined in the colormap.
        interpolate (bool): Toggle the interpolation of values in the
            colormap.  If ``False``, only values from the colormap are
            used. This may lead to the re-use of a color, if the colormap
            provides less colors than requested. If ``True``, a lookup table
            is used to interpolate colors (default is ``True``).

    Returns:
        ndarray: RGBA-values.

    Examples:
        >>> cmap2rgba('viridis', 5)
        array([[ 0.267004,  0.004874,  0.329415,  1.      ],
            [ 0.229739,  0.322361,  0.545706,  1.      ],
            [ 0.127568,  0.566949,  0.550556,  1.      ],
            [ 0.369214,  0.788888,  0.382914,  1.      ],
            [ 0.993248,  0.906157,  0.143936,  1.      ]])
    """
    cmap = plt.get_cmap(cmap)

    if N is None:
        N = cmap.N

    nlut = N if interpolate else None

    if interpolate and isinstance(cmap, colors.ListedColormap):
        # `ListedColormap` does not support lookup table interpolation.
        cmap = colors.LinearSegmentedColormap.from_list('', cmap.colors)
        return cmap(np.linspace(0, 1, N))

    return plt.get_cmap(cmap.name, lut=nlut)(np.linspace(0, 1, N)) 
开发者ID:atmtools,项目名称:typhon,代码行数:39,代码来源:common.py

示例9: cmap_from_act

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def cmap_from_act(file, name=None):
    """Import colormap from Adobe Color Table file.

    Parameters:
        file (str): Path to act file.
        name (str): Colormap name. Defaults to filename without extension.

    Returns:
        LinearSegmentedColormap.
    """
    # Extract colormap name from filename.
    if name is None:
        name = os.path.splitext(os.path.basename(file))[0]

    # Read binary file and determine number of colors
    rgb = np.fromfile(file, dtype=np.uint8)
    if rgb.shape[0] >= 770:
        ncolors = rgb[768] * 2**8 + rgb[769]
    else:
        ncolors = 256

    colors = rgb[:ncolors*3].reshape(ncolors, 3) / 255

    # Create and register colormap...
    cmap = LinearSegmentedColormap.from_list(name, colors, N=ncolors)
    plt.register_cmap(cmap=cmap)  # Register colormap.

    # ... and the reversed colormap.
    cmap_r = LinearSegmentedColormap.from_list(
            name + '_r', np.flipud(colors), N=ncolors)
    plt.register_cmap(cmap=cmap_r)

    return cmap 
开发者ID:atmtools,项目名称:typhon,代码行数:35,代码来源:common.py

示例10: cmap_from_txt

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def cmap_from_txt(file, name=None, N=-1, comments='%'):
    """Import colormap from txt file.

    Reads colormap data (RGB/RGBA) from an ASCII file.
    Values have to be given in [0, 1] range.

    Parameters:
        file (str): Path to txt file.
        name (str): Colormap name. Defaults to filename without extension.
        N (int): Number of colors.
            ``-1`` means all colors (i.e., the complete file).
        comments (str): Character to start comments with.

    Returns:
        LinearSegmentedColormap.
    """
    # Extract colormap name from filename.
    if name is None:
        name = os.path.splitext(os.path.basename(file))[0]

    # Read binary file and determine number of colors
    rgb = np.genfromtxt(file, comments=comments)
    if N == -1:
        N = np.shape(rgb)[0]

    if np.min(rgb) < 0 or np.max(rgb) > 1:
        raise Exception('RGB value out of range: [0, 1].')

    # Create and register colormap...
    cmap = LinearSegmentedColormap.from_list(name, rgb, N=N)
    plt.register_cmap(cmap=cmap)

    # ... and the reversed colormap.
    cmap_r = LinearSegmentedColormap.from_list(
            name + '_r', np.flipud(rgb), N=N)
    plt.register_cmap(cmap=cmap_r)

    return cmap 
开发者ID:atmtools,项目名称:typhon,代码行数:40,代码来源:common.py

示例11: truncate_colormap

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=-1):
    """
    Truncates a standard matplotlib colourmap so
    that you can use part of the colour range in your plots.
    Handy when the colourmap you like has very light values at
    one end of the map that can't be seen easily.

    Arguments:
      cmap (:obj: `Colormap`): A matplotlib Colormap object. Note this is not
         a string name of the colourmap, you must pass the object type.
      minval (int, optional): The lower value to truncate the colour map to.
         colourmaps range from 0.0 to 1.0. Should be 0.0 to include the full
         lower end of the colour spectrum.
      maxval (int, optional): The upper value to truncate the colour map to.
         maximum should be 1.0 to include the full upper range of colours.
      n (int): Leave at default.

    Example:
       minColor = 0.00
       maxColor = 0.85
       inferno_t = truncate_colormap(_plt.get_cmap("inferno"), minColor, maxColor)
    """
    cmap = _plt.get_cmap(cmap)

    if n == -1:
        n = cmap.N
    new_cmap = _mcolors.LinearSegmentedColormap.from_list(
         'trunc({name},{a:.2f},{b:.2f})'.format(name=cmap.name, a=minval, b=maxval),
         cmap(_np.linspace(minval, maxval, n)))
    return new_cmap 
开发者ID:LSDtopotools,项目名称:LSDMappingTools,代码行数:32,代码来源:colours.py

示例12: discrete_colourmap

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def discrete_colourmap(N, base_cmap=None):
    """Creates an N-bin discrete colourmap from the specified input colormap.

    Author: github.com/jakevdp adopted by DAV

    Note: Modified so you can pass in the string name of a colourmap
        or a Colormap object.

    Arguments:
        N (int): Number of bins for the discrete colourmap. I.e. the number
            of colours you will get.
        base_cmap (str or Colormap object): Can either be the name of a colourmap
            e.g. "jet" or a matplotlib Colormap object
    """

    print(type(base_cmap))
    if isinstance(base_cmap, _mcolors.Colormap):
        base = base_cmap
    elif isinstance(base_cmap, str):
        base = _plt.cm.get_cmap(base_cmap)
    else:
        print("Colourmap supplied is of type: ", type(base_cmap))
        raise ValueError('Colourmap must either be a string name of a colormap, \
                         or a Colormap object (class instance). Please try again.')

    color_list = base(_np.linspace(0, 1, N))
    cmap_name = base.name + str(N)
    return base.from_list(cmap_name, color_list, N) 
开发者ID:LSDtopotools,项目名称:LSDMappingTools,代码行数:30,代码来源:colours.py

示例13: opencv_rainbow

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def opencv_rainbow(resolution=1000):
    # Construct the opencv equivalent of Rainbow
    opencv_rainbow_data = (
        (0.000, (1.00, 0.00, 0.00)),
        (0.400, (1.00, 1.00, 0.00)),
        (0.600, (0.00, 1.00, 0.00)),
        (0.800, (0.00, 0.00, 1.00)),
        (1.000, (0.60, 0.00, 1.00))
    )

    return LinearSegmentedColormap.from_list('opencv_rainbow', opencv_rainbow_data, resolution) 
开发者ID:ClementPinard,项目名称:SfmLearner-Pytorch,代码行数:13,代码来源:utils.py

示例14: _cmap_from_image_path

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def _cmap_from_image_path(img_path):
        img = Image.open(img_path)
        img = img.resize((256, img.height))
        colours = (img.getpixel((x, 0)) for x in range(256))
        colours = [(r/255, g/255, b/255, a/255) for (r, g, b, a) in colours]
        return LinearSegmentedColormap.from_list('from_image', colours) 
开发者ID:LumenResearch,项目名称:heatmappy,代码行数:8,代码来源:heatmap.py

示例15: swap_colors

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def swap_colors(json_file_path):
    '''
    Switches out color ramp in meta.json files.
    Uses custom color ramp if provided and valid; otherwise falls back to nextstrain default colors.
    N.B.: Modifies json in place and writes to original file path.
    '''
    j = json.load(open(json_file_path, 'r'))
    color_options = j['color_options']

    for k,v in color_options.items():
        if 'color_map' in v:
            categories, colors = zip(*v['color_map'])

            ## Use custom colors if provided AND present for all categories in the dataset
            if custom_colors and all([category in custom_colors for category in categories]):
                colors = [ custom_colors[category] for category in categories ]

            ## Expand the color palette if we have too many categories
            elif len(categories) > len(default_colors):
                from matplotlib.colors import LinearSegmentedColormap, to_hex
                from numpy import linspace
                expanded_cmap = LinearSegmentedColormap.from_list('expanded_cmap', default_colors[-1], N=len(categories))
                discrete_colors = [expanded_cmap(i) for i in linspace(0,1,len(categories))]
                colors = [to_hex(c).upper() for c in discrete_colors]

            else: ## Falls back to default nextstrain colors
                colors = default_colors[len(categories)] # based on how many categories are present; keeps original ordering

            j['color_options'][k]['color_map'] = map(list, zip(categories, colors))

    json.dump(j, open(json_file_path, 'w'), indent=1) 
开发者ID:nextstrain,项目名称:augur,代码行数:33,代码来源:swap_colors.py


注:本文中的matplotlib.colors.LinearSegmentedColormap.from_list方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。