本文整理匯總了Python中matplotlib.colors.LightSource方法的典型用法代碼示例。如果您正苦於以下問題:Python colors.LightSource方法的具體用法?Python colors.LightSource怎麽用?Python colors.LightSource使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.colors
的用法示例。
在下文中一共展示了colors.LightSource方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compare
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import LightSource [as 別名]
def compare(z, cmap, ve=1):
# Create subplots and hide ticks
fig, axs = plt.subplots(ncols=2, nrows=2)
for ax in axs.flat:
ax.set(xticks=[], yticks=[])
# Illuminate the scene from the northwest
ls = LightSource(azdeg=315, altdeg=45)
axs[0, 0].imshow(z, cmap=cmap)
axs[0, 0].set(xlabel='Colormapped Data')
axs[0, 1].imshow(ls.hillshade(z, vert_exag=ve), cmap='gray')
axs[0, 1].set(xlabel='Illumination Intensity')
rgb = ls.shade(z, cmap=cmap, vert_exag=ve, blend_mode='hsv')
axs[1, 0].imshow(rgb)
axs[1, 0].set(xlabel='Blend Mode: "hsv" (default)')
rgb = ls.shade(z, cmap=cmap, vert_exag=ve, blend_mode='overlay')
axs[1, 1].imshow(rgb)
axs[1, 1].set(xlabel='Blend Mode: "overlay"')
return fig
示例2: display_colorbar
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import LightSource [as 別名]
def display_colorbar():
"""Display a correct numeric colorbar for a shaded plot."""
y, x = np.mgrid[-4:2:200j, -4:2:200j]
z = 10 * np.cos(x**2 + y**2)
cmap = plt.cm.copper
ls = LightSource(315, 45)
rgb = ls.shade(z, cmap)
fig, ax = plt.subplots()
ax.imshow(rgb, interpolation='bilinear')
# Use a proxy artist for the colorbar...
im = ax.imshow(z, cmap=cmap)
im.remove()
fig.colorbar(im)
ax.set_title('Using a colorbar with a shaded plot', size='x-large')
示例3: avoid_outliers
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import LightSource [as 別名]
def avoid_outliers():
"""Use a custom norm to control the displayed z-range of a shaded plot."""
y, x = np.mgrid[-4:2:200j, -4:2:200j]
z = 10 * np.cos(x**2 + y**2)
# Add some outliers...
z[100, 105] = 2000
z[120, 110] = -9000
ls = LightSource(315, 45)
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4.5))
rgb = ls.shade(z, plt.cm.copper)
ax1.imshow(rgb, interpolation='bilinear')
ax1.set_title('Full range of data')
rgb = ls.shade(z, plt.cm.copper, vmin=-10, vmax=10)
ax2.imshow(rgb, interpolation='bilinear')
ax2.set_title('Manually set range')
fig.suptitle('Avoiding Outliers in Shaded Plots', size='x-large')
示例4: test_light_source_topo_surface
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import LightSource [as 別名]
def test_light_source_topo_surface():
"""Shades a DEM using different v.e.'s and blend modes."""
fname = cbook.get_sample_data('jacksboro_fault_dem.npz', asfileobj=False)
dem = np.load(fname)
elev = dem['elevation']
# Get the true cellsize in meters for accurate vertical exaggeration
# Convert from decimal degrees to meters
dx, dy = dem['dx'], dem['dy']
dx = 111320.0 * dx * np.cos(dem['ymin'])
dy = 111320.0 * dy
dem.close()
ls = mcolors.LightSource(315, 45)
cmap = cm.gist_earth
fig, axes = plt.subplots(nrows=3, ncols=3)
for row, mode in zip(axes, ['hsv', 'overlay', 'soft']):
for ax, ve in zip(row, [0.1, 1, 10]):
rgb = ls.shade(elev, cmap, vert_exag=ve, dx=dx, dy=dy,
blend_mode=mode)
ax.imshow(rgb)
ax.set(xticks=[], yticks=[])
示例5: ThrShow
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import LightSource [as 別名]
def ThrShow(self,data):
font1 = {'family' : 'STXihei',
'weight' : 'normal',
'size' : 50,
}
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'),figsize=(50,20))
ls = LightSource(data.shape[0], data.shape[1])
rgb = ls.shade(data, cmap=cm.gist_earth, vert_exag=0.1, blend_mode='soft')
x=np.array([list(range(data.shape[0]))]*data.shape[1])
print(x.shape,x.T.shape,data.shape)
surf = ax.plot_surface(x, x.T, data, rstride=1, cstride=1, facecolors=rgb,linewidth=0, antialiased=False, shade=False,alpha=0.3)
fig.colorbar(surf,shrink=0.5,aspect=5)
cset = ax.contour(x, x.T, data, zdir='z', offset=37, cmap=cm.coolwarm)
cset = ax.contour(x, x.T, data, zdir='x', offset=-30, cmap=cm.coolwarm)
cset = ax.contour(x, x.T, data, zdir='y', offset=-30, cmap=cm.coolwarm)
plt.show()
示例6: hillshaded
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import LightSource [as 別名]
def hillshaded(a, land_mask=None, angle=270):
if land_mask is None: land_mask = np.ones_like(a)
ls = LightSource(azdeg=angle, altdeg=30)
land = ls.shade(a, cmap=_TERRAIN_CMAP, vert_exag=10.0,
blend_mode='overlay')[:, :, :3]
water = np.tile((0.25, 0.35, 0.55), a.shape + (1,))
return lerp(water, land, land_mask[:, :, np.newaxis])
# Linear interpolation of `x` to `y` with respect to `a`
示例7: _shade_colors_lightsource
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import LightSource [as 別名]
def _shade_colors_lightsource(self, data, cmap, lightsource):
if lightsource is None:
lightsource = LightSource(azdeg=135, altdeg=55)
return lightsource.shade(data, cmap)
示例8: test_light_source_shading_color_range
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import LightSource [as 別名]
def test_light_source_shading_color_range():
# see also
#http://matplotlib.org/examples/pylab_examples/shading_example.html
from matplotlib.colors import LightSource
from matplotlib.colors import Normalize
refinput = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
norm = Normalize(vmin=0, vmax=50)
ls = LightSource(azdeg=0, altdeg=65)
testoutput = ls.shade(refinput, plt.cm.jet, norm=norm)
refoutput = np.array([
[[0., 0., 0.58912656, 1.],
[0., 0., 0.67825312, 1.],
[0., 0., 0.76737968, 1.],
[0., 0., 0.85650624, 1.]],
[[0., 0., 0.9456328, 1.],
[0., 0., 1., 1.],
[0., 0.04901961, 1., 1.],
[0., 0.12745098, 1., 1.]],
[[0., 0.22156863, 1., 1.],
[0., 0.3, 1., 1.],
[0., 0.37843137, 1., 1.],
[0., 0.45686275, 1., 1.]]
])
assert_array_almost_equal(refoutput, testoutput)
示例9: __init__
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import LightSource [as 別名]
def __init__(self, sigma, fraction=0.5):
self.gauss_filter = GaussianFilter(sigma, alpha=1)
self.light_source = LightSource()
self.fraction = fraction
示例10: shade_other_data
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import LightSource [as 別名]
def shade_other_data():
"""Demonstrates displaying different variables through shade and color."""
y, x = np.mgrid[-4:2:200j, -4:2:200j]
z1 = np.sin(x**2) # Data to hillshade
z2 = np.cos(x**2 + y**2) # Data to color
norm = Normalize(z2.min(), z2.max())
cmap = plt.cm.RdBu
ls = LightSource(315, 45)
rgb = ls.shade_rgb(cmap(norm(z2)), z1)
fig, ax = plt.subplots()
ax.imshow(rgb, interpolation='bilinear')
ax.set_title('Shade by one variable, color by another', size='x-large')
示例11: test_light_source_hillshading
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import LightSource [as 別名]
def test_light_source_hillshading():
"""Compare the current hillshading method against one that should be
mathematically equivalent. Illuminates a cone from a range of angles."""
def alternative_hillshade(azimuth, elev, z):
illum = _sph2cart(*_azimuth2math(azimuth, elev))
illum = np.array(illum)
dy, dx = np.gradient(-z)
dy = -dy
dz = np.ones_like(dy)
normals = np.dstack([dx, dy, dz])
normals /= np.linalg.norm(normals, axis=2)[..., None]
intensity = np.tensordot(normals, illum, axes=(2, 0))
intensity -= intensity.min()
intensity /= intensity.ptp()
return intensity
y, x = np.mgrid[5:0:-1, :5]
z = -np.hypot(x - x.mean(), y - y.mean())
for az, elev in itertools.product(range(0, 390, 30), range(0, 105, 15)):
ls = mcolors.LightSource(az, elev)
h1 = ls.hillshade(z)
h2 = alternative_hillshade(az, elev, z)
assert_array_almost_equal(h1, h2)
示例12: test_light_source_planar_hillshading
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import LightSource [as 別名]
def test_light_source_planar_hillshading():
"""Ensure that the illumination intensity is correct for planar
surfaces."""
def plane(azimuth, elevation, x, y):
"""Create a plane whose normal vector is at the given azimuth and
elevation."""
theta, phi = _azimuth2math(azimuth, elevation)
a, b, c = _sph2cart(theta, phi)
z = -(a*x + b*y) / c
return z
def angled_plane(azimuth, elevation, angle, x, y):
"""Create a plane whose normal vector is at an angle from the given
azimuth and elevation."""
elevation = elevation + angle
if elevation > 90:
azimuth = (azimuth + 180) % 360
elevation = (90 - elevation) % 90
return plane(azimuth, elevation, x, y)
y, x = np.mgrid[5:0:-1, :5]
for az, elev in itertools.product(range(0, 390, 30), range(0, 105, 15)):
ls = mcolors.LightSource(az, elev)
# Make a plane at a range of angles to the illumination
for angle in range(0, 105, 15):
z = angled_plane(az, elev, angle, x, y)
h = ls.hillshade(z)
assert_array_almost_equal(h, np.cos(np.radians(angle)))
示例13: _shade_colors
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import LightSource [as 別名]
def _shade_colors(color, normals, lightsource=None):
"""
Shade *color* using normal vectors given by *normals*.
*color* can also be an array of the same length as *normals*.
"""
if lightsource is None:
# chosen for backwards-compatibility
lightsource = LightSource(azdeg=225, altdeg=19.4712)
def mod(v):
return np.sqrt(v[0] ** 2 + v[1] ** 2 + v[2] ** 2)
shade = np.array([np.dot(n / mod(n), lightsource.direction)
if mod(n) else np.nan for n in normals])
mask = ~np.isnan(shade)
if mask.any():
norm = Normalize(min(shade[mask]), max(shade[mask]))
shade[~mask] = min(shade[mask])
color = mcolors.to_rgba_array(color)
# shape of color should be (M, 4) (where M is number of faces)
# shape of shade should be (M,)
# colors should have final shape of (M, 4)
alpha = color[:, 3]
colors = (0.5 + norm(shade)[:, np.newaxis] * 0.5) * color
colors[:, 3] = alpha
else:
colors = np.asanyarray(color).copy()
return colors
示例14: createLatLonTimeAverageMap3d
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import LightSource [as 別名]
def createLatLonTimeAverageMap3d(res, meta, startTime=None, endTime=None):
latSeries = [m[0]['lat'] for m in res][::-1]
lonSeries = [m['lon'] for m in res[0]]
data = np.zeros((len(latSeries), len(lonSeries)))
for t in range(0, len(latSeries)):
latSet = res[t]
for l in range(0, len(lonSeries)):
data[len(latSeries) - t - 1][l] = latSet[l]['avg']
data[data == 0.0] = np.nan
x, y = np.meshgrid(latSeries, lonSeries)
z = data
region = np.s_[0:178, 0:178]
x, y, z = x[region], y[region], z[region]
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
ls = LightSource(270, 45)
masked_array = np.ma.array(z, mask=np.isnan(z))
rgb = ls.shade(masked_array, cmap=cm.gist_earth) # , vert_exag=0.1, blend_mode='soft')
surf = ax.plot_surface(x, y, masked_array, rstride=1, cstride=1, facecolors=rgb,
linewidth=0, antialiased=False, shade=False)
sio = StringIO()
plt.savefig(sio, format='png')
return sio.getvalue()
示例15: createHoffmueller
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import LightSource [as 別名]
def createHoffmueller(data, coordSeries, timeSeries, coordName, title, interpolate='nearest'):
cmap = cm.coolwarm
# ls = LightSource(315, 45)
# rgb = ls.shade(data, cmap)
fig, ax = plt.subplots()
fig.set_size_inches(11.0, 8.5)
cax = ax.imshow(data, interpolation=interpolate, cmap=cmap)
def yFormatter(y, pos):
if y < len(coordSeries):
return "%s $^\circ$" % (int(coordSeries[int(y)] * 100.0) / 100.)
else:
return ""
def xFormatter(x, pos):
if x < len(timeSeries):
return timeSeries[int(x)].strftime('%b %Y')
else:
return ""
ax.xaxis.set_major_formatter(FuncFormatter(xFormatter))
ax.yaxis.set_major_formatter(FuncFormatter(yFormatter))
ax.set_title(title)
ax.set_ylabel(coordName)
ax.set_xlabel('Date')
fig.colorbar(cax)
fig.autofmt_xdate()
labels = ['point {0}'.format(i + 1) for i in range(len(data))]
# plugins.connect(fig, plugins.MousePosition(fontsize=14))
tooltip = mpld3.plugins.PointLabelTooltip(cax, labels=labels)
mpld3.plugins.connect(fig, tooltip)
mpld3.show()
# sio = StringIO()
# plt.savefig(sio, format='png')
# return sio.getvalue()