本文整理匯總了Python中matplotlib.colors.Colormap方法的典型用法代碼示例。如果您正苦於以下問題:Python colors.Colormap方法的具體用法?Python colors.Colormap怎麽用?Python colors.Colormap使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.colors
的用法示例。
在下文中一共展示了colors.Colormap方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Colormap [as 別名]
def __init__(self, cmap, levels):
if isinstance(cmap, str):
self.cmap = _cm.get_cmap(cmap)
elif isinstance(cmap, _mcolors.Colormap):
self.cmap = cmap
else:
raise ValueError('Colourmap must either be a string name of a colormap, \
or a Colormap object (class instance). Please try again.' \
"Colourmap supplied is of type: ", type(cmap))
self.N = self.cmap.N
self.monochrome = self.cmap.monochrome
self.levels = _np.asarray(levels)#, dtype='float64')
self._x = self.levels
self.levmax = self.levels.max()
self.levmin = self.levels.min()
self.transformed_levels = _np.linspace(self.levmin, self.levmax,
len(self.levels))
示例2: slice3d
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Colormap [as 別名]
def slice3d(*data: np.ndarray, axis: int = -1, scale: int = 5, max_columns: int = None, colorbar: bool = False,
show_axes: bool = False, cmap: Union[Colormap, str] = 'gray', vlim: AxesParams = None):
"""
Creates an interactive plot, simultaneously showing slices along a given ``axis`` for all the passed images.
Parameters
----------
data
axis
scale
the figure scale.
max_columns
the maximal number of figures in a row. If None - all figures will be in the same row.
colorbar
Whether to display a colorbar.
show_axes
Whether to do display grid on the image.
cmap
vlim
used to normalize luminance data. If None - the limits are determined automatically.
Must be broadcastable to (len(data), 2). See `matplotlib.pyplot.imshow` (vmin and vmax) for details.
"""
_slice_base(data, axis, scale, max_columns, colorbar, show_axes, cmap, vlim)
示例3: test_get_cmap
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Colormap [as 別名]
def test_get_cmap(self):
ensure_cmaps_loaded()
cmap_name, cmap = get_cmap('plasma')
self.assertEqual('plasma', cmap_name)
self.assertIsInstance(cmap, Colormap)
cmap_name, cmap = get_cmap('PLASMA')
self.assertEqual('viridis', cmap_name)
self.assertIsInstance(cmap, Colormap)
cmap_name, cmap = get_cmap('PLASMA', default_cmap_name='magma')
self.assertEqual('magma', cmap_name)
self.assertIsInstance(cmap, Colormap)
with self.assertRaises(ValueError):
get_cmap('PLASMA', default_cmap_name='MAGMA')
示例4: get_cmap
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Colormap [as 別名]
def get_cmap( cmap, name=None, n=256 ):
""" in: a name "Blues" "BuGn_r" ... of a builtin cmap (case-sensitive)
or a filename, np.loadtxt() n x 3 or 4 ints 0..255 or floats 0..1
or a cmap already
or a numpy array.
See http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps
or in IPython, pl.cm.<tab>
"""
if isinstance( cmap, colors.Colormap ):
return cmap
if isinstance( cmap, str ):
if cmap in cm.cmap_d:
return pl.get_cmap( cmap ) # "Blues" ...
A = np.loadtxt( cmap, delimiter=None ) # None: white space
name = name or cmap.split("/")[-1] .split(".")[0] # .../xx.csv -> xx
else:
A = cmap # numpy array or array-like
return array_cmap( A, name, n=n )
示例5: get_ctab
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Colormap [as 別名]
def get_ctab(cmap):
if not isinstance(cmap, Colormap):
cmap = get_cmap(cmap)
return np.array([cmap(v) for v in np.linspace(0, 1, cmap.N)])
示例6: truncate_colormap
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Colormap [as 別名]
def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=-1):
"""
Truncates a standard matplotlib colourmap so
that you can use part of the colour range in your plots.
Handy when the colourmap you like has very light values at
one end of the map that can't be seen easily.
Arguments:
cmap (:obj: `Colormap`): A matplotlib Colormap object. Note this is not
a string name of the colourmap, you must pass the object type.
minval (int, optional): The lower value to truncate the colour map to.
colourmaps range from 0.0 to 1.0. Should be 0.0 to include the full
lower end of the colour spectrum.
maxval (int, optional): The upper value to truncate the colour map to.
maximum should be 1.0 to include the full upper range of colours.
n (int): Leave at default.
Example:
minColor = 0.00
maxColor = 0.85
inferno_t = truncate_colormap(_plt.get_cmap("inferno"), minColor, maxColor)
"""
cmap = _plt.get_cmap(cmap)
if n == -1:
n = cmap.N
new_cmap = _mcolors.LinearSegmentedColormap.from_list(
'trunc({name},{a:.2f},{b:.2f})'.format(name=cmap.name, a=minval, b=maxval),
cmap(_np.linspace(minval, maxval, n)))
return new_cmap
示例7: discrete_colourmap
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Colormap [as 別名]
def discrete_colourmap(N, base_cmap=None):
"""Creates an N-bin discrete colourmap from the specified input colormap.
Author: github.com/jakevdp adopted by DAV
Note: Modified so you can pass in the string name of a colourmap
or a Colormap object.
Arguments:
N (int): Number of bins for the discrete colourmap. I.e. the number
of colours you will get.
base_cmap (str or Colormap object): Can either be the name of a colourmap
e.g. "jet" or a matplotlib Colormap object
"""
print(type(base_cmap))
if isinstance(base_cmap, _mcolors.Colormap):
base = base_cmap
elif isinstance(base_cmap, str):
base = _plt.cm.get_cmap(base_cmap)
else:
print("Colourmap supplied is of type: ", type(base_cmap))
raise ValueError('Colourmap must either be a string name of a colormap, \
or a Colormap object (class instance). Please try again.')
color_list = base(_np.linspace(0, 1, N))
cmap_name = base.name + str(N)
return base.from_list(cmap_name, color_list, N)
示例8: colorbar_index
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Colormap [as 別名]
def colorbar_index(fig, cax, ncolors, cmap, drape_min_threshold, drape_max):
"""State-machine like function that creates a discrete colormap and plots
it on a figure that is passed as an argument.
Arguments:
fig (matplotlib.Figure): Instance of a matplotlib figure object.
cax (matplotlib.Axes): Axes instance to create the colourbar from.
This must be the Axes containing the data that your colourbar will be
mapped from.
ncolors (int): The number of colours in the discrete colourbar map.
cmap (str or Colormap object): Either the name of a matplotlib colormap, or
an object instance of the colormap, e.g. cm.jet
drape_min_threshold (float): Number setting the threshold level of the drape raster
This should match any threshold you have set to mask the drape/overlay raster.
drape_max (float): Similar to above, but for the upper threshold of your drape mask.
"""
discrete_cmap = discrete_colourmap(ncolors, cmap)
mappable = _cm.ScalarMappable(cmap=discrete_cmap)
mappable.set_array([])
#mappable.set_clim(-0.5, ncolors + 0.5)
mappable.set_clim(drape_min_threshold, drape_max)
print(type(fig))
print(type(mappable))
print(type(cax))
print()
cbar = _plt.colorbar(mappable, cax=cax) #switched from fig to plt to expose the labeling params
print(type(cbar))
#cbar.set_ticks(_np.linspace(0, ncolors, ncolors))
pad = ((ncolors - 1) / ncolors) / 2 # Move labels to center of bars.
cbar.set_ticks(_np.linspace(drape_min_threshold + pad, drape_max - pad,
ncolors))
return cbar
# Generate random colormap
示例9: register_cmap
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Colormap [as 別名]
def register_cmap(name=None, cmap=None, data=None, lut=None):
"""
Add a colormap to the set recognized by :func:`get_cmap`.
It can be used in two ways::
register_cmap(name='swirly', cmap=swirly_cmap)
register_cmap(name='choppy', data=choppydata, lut=128)
In the first case, *cmap* must be a :class:`matplotlib.colors.Colormap`
instance. The *name* is optional; if absent, the name will
be the :attr:`~matplotlib.colors.Colormap.name` attribute of the *cmap*.
In the second case, the three arguments are passed to
the :class:`~matplotlib.colors.LinearSegmentedColormap` initializer,
and the resulting colormap is registered.
"""
if name is None:
try:
name = cmap.name
except AttributeError:
raise ValueError("Arguments must include a name or a Colormap")
if not cbook.is_string_like(name):
raise ValueError("Colormap name must be a string")
if isinstance(cmap, colors.Colormap):
cmap_d[name] = cmap
return
# For the remainder, let exceptions propagate.
if lut is None:
lut = mpl.rcParams['image.lut']
cmap = colors.LinearSegmentedColormap(name, data, lut)
cmap_d[name] = cmap
示例10: get_cmap
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Colormap [as 別名]
def get_cmap(name=None, lut=None):
"""
Get a colormap instance, defaulting to rc values if *name* is None.
Colormaps added with :func:`register_cmap` take precedence over
built-in colormaps.
If *name* is a :class:`matplotlib.colors.Colormap` instance, it will be
returned.
If *lut* is not None it must be an integer giving the number of
entries desired in the lookup table, and *name* must be a
standard mpl colormap name with a corresponding data dictionary
in *datad*.
"""
if name is None:
name = mpl.rcParams['image.cmap']
if isinstance(name, colors.Colormap):
return name
if name in cmap_d:
if lut is None:
return cmap_d[name]
elif name in datad:
return _generate_cmap(name, lut)
raise ValueError("Colormap %s is not recognized" % name)
示例11: __init__
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Colormap [as 別名]
def __init__(self, norm=None, cmap=None):
r"""
Parameters
----------
norm : :class:`matplotlib.colors.Normalize` instance
The normalizing object which scales data, typically into the
interval ``[0, 1]``.
cmap : str or :class:`~matplotlib.colors.Colormap` instance
The colormap used to map normalized data values to RGBA colors.
"""
self.callbacksSM = cbook.CallbackRegistry()
if cmap is None:
cmap = get_cmap()
if norm is None:
norm = colors.Normalize()
self._A = None
#: The Normalization instance of this ScalarMappable.
self.norm = norm
#: The Colormap instance of this ScalarMappable.
self.cmap = get_cmap(cmap)
#: The last colorbar associated with this ScalarMappable. May be None.
self.colorbar = None
self.update_dict = {'array': False}
示例12: dpt_timeseries
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Colormap [as 別名]
def dpt_timeseries(
adata: AnnData,
color_map: Union[str, Colormap] = None,
show: Optional[bool] = None,
save: Optional[bool] = None,
as_heatmap: bool = True,
):
"""\
Heatmap of pseudotime series.
Parameters
----------
as_heatmap
Plot the timeseries as heatmap.
"""
if adata.n_vars > 100:
logg.warning(
'Plotting more than 100 genes might take some while, '
'consider selecting only highly variable genes, for example.'
)
# only if number of genes is not too high
if as_heatmap:
# plot time series as heatmap, as in Haghverdi et al. (2016), Fig. 1d
timeseries_as_heatmap(
adata.X[adata.obs['dpt_order_indices'].values],
var_names=adata.var_names,
highlights_x=adata.uns['dpt_changepoints'],
color_map=color_map,
)
else:
# plot time series as gene expression vs time
timeseries(
adata.X[adata.obs['dpt_order_indices'].values],
var_names=adata.var_names,
highlights_x=adata.uns['dpt_changepoints'],
xlim=[0, 1.3 * adata.X.shape[0]],
)
pl.xlabel('dpt order')
savefig_or_show('dpt_timeseries', save=save, show=show)
示例13: dpt_groups_pseudotime
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Colormap [as 別名]
def dpt_groups_pseudotime(
adata: AnnData,
color_map: Union[str, Colormap, None] = None,
palette: Union[Sequence[str], Cycler, None] = None,
show: Optional[bool] = None,
save: Union[bool, str, None] = None,
):
"""Plot groups and pseudotime."""
_, (ax_grp, ax_ord) = pl.subplots(2, 1)
timeseries_subplot(
adata.obs['dpt_groups'].cat.codes,
time=adata.obs['dpt_order'].values,
color=np.asarray(adata.obs['dpt_groups']),
highlights_x=adata.uns['dpt_changepoints'],
ylabel='dpt groups',
yticks=(
np.arange(len(adata.obs['dpt_groups'].cat.categories), dtype=int)
if len(adata.obs['dpt_groups'].cat.categories) < 5
else None
),
palette=palette,
ax=ax_grp,
)
timeseries_subplot(
adata.obs['dpt_pseudotime'].values,
time=adata.obs['dpt_order'].values,
color=adata.obs['dpt_pseudotime'].values,
xlabel='dpt order',
highlights_x=adata.uns['dpt_changepoints'],
ylabel='pseudotime',
yticks=[0, 1],
color_map=color_map,
ax=ax_ord,
)
savefig_or_show('dpt_groups_pseudotime', save=save, show=show)
示例14: _slice_base
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Colormap [as 別名]
def _slice_base(data: [np.ndarray], axis: int = -1, scale: int = 5, max_columns: int = None, colorbar: bool = False,
show_axes: bool = False, cmap: Union[Colormap, str] = 'gray', vlim: AxesParams = None,
callback: Callable = None, sliders: dict = None):
from ipywidgets import interact, IntSlider
check_shape_along_axis(*data, axis=axis)
vlim = np.broadcast_to(vlim, [len(data), 2]).tolist()
rows, columns = _get_rows_cols(max_columns, data)
sliders = sliders or {}
if 'idx' in sliders:
raise ValueError(f'Overriding "idx" is not allowed.')
def update(idx, **kwargs):
fig, axes = plt.subplots(rows, columns, figsize=(scale * columns, scale * rows))
for ax, x, (vmin, vmax) in zip(np.array(axes).flatten(), data, vlim):
im = ax.imshow(x.take(idx, axis=axis), cmap=cmap, vmin=vmin, vmax=vmax)
if colorbar:
fig.colorbar(im, ax=ax, orientation='horizontal')
if not show_axes:
ax.set_axis_off()
if callback is not None:
callback(axes, idx=idx, **kwargs)
plt.tight_layout()
plt.show()
interact(update, idx=IntSlider(min=0, max=data[0].shape[axis] - 1, continuous_update=False), **sliders)
示例15: get_cmap
# 需要導入模塊: from matplotlib import colors [as 別名]
# 或者: from matplotlib.colors import Colormap [as 別名]
def get_cmap(name=None, lut=None):
"""
Get a colormap instance, defaulting to rc values if *name* is None.
Colormaps added with :func:`register_cmap` take precedence over
built-in colormaps.
If *name* is a :class:`matplotlib.colors.Colormap` instance, it will be
returned.
If *lut* is not None it must be an integer giving the number of
entries desired in the lookup table, and *name* must be a
standard mpl colormap name with a corresponding data dictionary
in *datad*.
"""
if name is None:
name = mpl.rcParams['image.cmap']
if isinstance(name, colors.Colormap):
return name
if name in cmap_d:
if lut is None:
return cmap_d[name]
elif name in datad:
return _generate_cmap(name, lut)
else:
raise ValueError(
"Colormap %s is not recognized. Possible values are: %s"
% (name, ', '.join(cmap_d.keys())))