當前位置: 首頁>>代碼示例>>Python>>正文


Python matplotlib.colorbar方法代碼示例

本文整理匯總了Python中matplotlib.colorbar方法的典型用法代碼示例。如果您正苦於以下問題:Python matplotlib.colorbar方法的具體用法?Python matplotlib.colorbar怎麽用?Python matplotlib.colorbar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib的用法示例。


在下文中一共展示了matplotlib.colorbar方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plotTZ

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colorbar [as 別名]
def plotTZ(filename=None):
    t = np.linspace(0, 1, 101)
    z = 0.25 + 0.5 / (1 + np.exp(- 20 * (t - 0.5))) + 0.05 * np.cos(t * 2 * np.pi)
    cmap = cm.get_cmap('cool')
    fig, (ax1, ax2) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[19, 1]})
    poly1 = [[0, 0]]
    poly1.extend([[t[i], z[i]] for i in range(t.size)])
    poly1.extend([[1, 0], [0, 0]])
    poly2 = [[0, 1]]
    poly2.extend([[t[i], z[i]] for i in range(t.size)])
    poly2.extend([[1, 1], [0, 1]])
    poly1 = plt.Polygon(poly1,fc=cmap(0.0))
    poly2 = plt.Polygon(poly2,fc=cmap(1.0))
    ax1.add_patch(poly1)
    ax1.add_patch(poly2)
    ax1.set_xlabel('x1', size=22)
    ax1.set_ylabel('x2', size=22)
    ax1.set_title('True Data', size=28)
    colorbar.ColorbarBase(ax2, cmap=cmap, format='%.1f')
    ax2.set_ylabel('Output y', size=22)
    plt.show()
    if not filename is None:
        plt.savefig(filename, format="pdf", bbox_inches="tight")
        plt.close() 
開發者ID:sato9hara,項目名稱:defragTrees,代碼行數:26,代碼來源:paper_synthetic2.py

示例2: plotTZ

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colorbar [as 別名]
def plotTZ(filename=None):
    cmap = cm.get_cmap('cool')
    fig, (ax1, ax2) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[19, 1]})
    ax1.add_patch(pl.Rectangle(xy=[0, 0], width=0.5, height=0.5, facecolor=cmap(0.0), linewidth='2.0'))
    ax1.add_patch(pl.Rectangle(xy=[0.5, 0.5], width=0.5, height=0.5, facecolor=cmap(0.0), linewidth='2.0'))
    ax1.add_patch(pl.Rectangle(xy=[0, 0.5], width=0.5, height=0.5, facecolor=cmap(1.0), linewidth='2.0'))
    ax1.add_patch(pl.Rectangle(xy=[0.5, 0], width=0.5, height=0.5, facecolor=cmap(1.0), linewidth='2.0'))
    ax1.set_xlabel('x1', size=22)
    ax1.set_ylabel('x2', size=22)
    ax1.set_title('True Data', size=28)
    colorbar.ColorbarBase(ax2, cmap=cmap, format='%.1f')
    ax2.set_ylabel('Output y', size=22)
    plt.show()
    if not filename is None:
        plt.savefig(filename, format="pdf", bbox_inches="tight")
        plt.close() 
開發者ID:sato9hara,項目名稱:defragTrees,代碼行數:18,代碼來源:paper_synthetic1.py

示例3: _plot_colorbar

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colorbar [as 別名]
def _plot_colorbar(self, color_legend_ax: Axes, normalize):
        """
        Plots a horizontal colorbar given the ax an normalize values

        Parameters
        ----------
        color_legend_ax
        normalize

        Returns
        -------
        None, updates color_legend_ax

        """
        cmap = pl.get_cmap(self.cmap)
        import matplotlib.colorbar

        matplotlib.colorbar.ColorbarBase(
            color_legend_ax, orientation='horizontal', cmap=cmap, norm=normalize
        )

        color_legend_ax.set_title(self.color_legend_title, fontsize='small')

        color_legend_ax.xaxis.set_tick_params(labelsize='small') 
開發者ID:theislab,項目名稱:scanpy,代碼行數:26,代碼來源:_baseplot_class.py

示例4: plotRule

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colorbar [as 別名]
def plotRule(mdl, X, d1, d2, alpha=0.8, filename='', rnum=-1, plot_line=[]):
    cmap = cm.get_cmap('cool')
    fig, (ax1, ax2) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[19, 1]})
    if rnum <= 0:
        rnum = len(mdl.rule_)
    else:
        rnum = min(len(mdl.rule_), rnum)
    idx = np.argsort(mdl.weight_[:rnum])
    for i in range(rnum):
        r = mdl.rule_[idx[i]]
        box, vmin, vmax = __r2boxWithX(r, X)
        if mdl.modeltype_ == 'regression':
            c = cmap(mdl.pred_[idx[i]])
        elif mdl.modeltype_ == 'classification':
            r = mdl.pred_[idx[i]] / max(np.unique(mdl.pred_).size - 1, 1)
            c = cmap(r)
        ax1.add_patch(pl.Rectangle(xy=[box[0, d1], box[0, d2]], width=(box[1, d1] - box[0, d1]), height=(box[1, d2] - box[0, d2]), facecolor=c, linewidth='2.0', alpha=alpha))
    if len(plot_line) > 0:
        for l in plot_line:
            ax1.plot(l[0], l[1], 'k--')
    ax1.set_xlabel('x1', size=22)
    ax1.set_ylabel('x2', size=22)
    ax1.set_title('Simplified Model (K = %d)' % (rnum,), size=28)
    colorbar.ColorbarBase(ax2, cmap=cmap, format='%.1f')
    ax2.set_ylabel('Predictor y', size=22)
    plt.show()
    if not filename == '':
        plt.savefig(filename, format="pdf", bbox_inches="tight")
        plt.close() 
開發者ID:sato9hara,項目名稱:defragTrees,代碼行數:31,代碼來源:RulePlotter.py

示例5: plotEachRule

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colorbar [as 別名]
def plotEachRule(mdl, X, d1, d2, alpha=0.8, filename='', rnum=-1, plot_line=[]):
    if rnum <= 0:
        rnum = len(mdl.rule_)
    else:
        rnum = min(len(mdl.rule_), rnum)
    m = rnum // 4
    if m * 4 < rnum:
        m += 1
    cmap = cm.get_cmap('cool')
    fig, ax = plt.subplots(m, 4 + 1, figsize=(4 * 4, 3 * m), gridspec_kw = {'width_ratios':[15, 15, 15, 15, 1]})
    idx = np.argsort(mdl.weight_[:rnum])
    for i in range(rnum):
        j = i // 4
        k = i - 4 * j
        r = mdl.rule_[idx[i]]
        box, vmin, vmax = __r2boxWithX(r, X)
        if mdl.modeltype_ == 'regression':
            c = cmap(mdl.pred_[idx[i]])
        elif mdl.modeltype_ == 'classification':
            r = mdl.pred_[idx[i]] / max(np.unique(mdl.pred_).size - 1, 1)
            c = cmap(r)
        ax[j, k].add_patch(pl.Rectangle(xy=[box[0, d1], box[0, d2]], width=(box[1, d1] - box[0, d1]), height=(box[1, d2] - box[0, d2]), facecolor=c, linewidth='2.0', alpha=alpha))
        if len(plot_line) > 0:
            for l in plot_line:
                ax[j, k].plot(l[0], l[1], 'k--')
        ax[j, k].set_xlim([0, 1])
        ax[j, k].set_ylim([0, 1])
        if k == 3:
            cbar = colorbar.ColorbarBase(ax[j, -1], cmap=cmap, format='%.1f', ticks=[0.0, 0.5, 1.0])
            cbar.ax.set_yticklabels([0.0, 0.5, 1.0])
            ax[j, -1].set_ylabel('Predictor y', size=12)
    plt.show()
    if not filename == '':
        plt.savefig(filename, format="pdf", bbox_inches="tight")
        plt.close() 
開發者ID:sato9hara,項目名稱:defragTrees,代碼行數:37,代碼來源:RulePlotter.py

示例6: colorbar

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colorbar [as 別名]
def colorbar(mappable=None, cax=None, ax=None, **kw):
    if mappable is None:
        mappable = gci()
        if mappable is None:
            raise RuntimeError('No mappable was found to use for colorbar '
                               'creation. First define a mappable such as '
                               'an image (with imshow) or a contour set ('
                               'with contourf).')
    if ax is None:
        ax = gca()

    ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw)
    draw_if_interactive()
    return ret 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:16,代碼來源:pyplot.py

示例7: _colorbar_extension_shape

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colorbar [as 別名]
def _colorbar_extension_shape(spacing):
    '''
    Produce 4 colorbars with rectangular extensions for either uniform
    or proportional spacing.

    Helper function for test_colorbar_extension_shape.
    '''
    # Get a colormap and appropriate norms for each extension type.
    cmap, norms = _get_cmap_norms()
    # Create a figure and adjust whitespace for subplots.
    fig = plt.figure()
    fig.subplots_adjust(hspace=4)
    for i, extension_type in enumerate(('neither', 'min', 'max', 'both')):
        # Get the appropriate norm and use it to get colorbar boundaries.
        norm = norms[extension_type]
        boundaries = values = norm.boundaries
        # Create a subplot.
        cax = fig.add_subplot(4, 1, i + 1)
        # Turn off text and ticks.
        for item in cax.get_xticklabels() + cax.get_yticklabels() +\
                cax.get_xticklines() + cax.get_yticklines():
            item.set_visible(False)
        # Generate the colorbar.
        cb = ColorbarBase(cax, cmap=cmap, norm=norm,
                boundaries=boundaries, values=values,
                extend=extension_type, extendrect=True,
                orientation='horizontal', spacing=spacing)
    # Return the figure to the caller.
    return fig 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:31,代碼來源:test_colorbar.py

示例8: _colorbar_extension_length

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colorbar [as 別名]
def _colorbar_extension_length(spacing):
    '''
    Produce 12 colorbars with variable length extensions for either
    uniform or proportional spacing.

    Helper function for test_colorbar_extension_length.
    '''
    # Get a colormap and appropriate norms for each extension type.
    cmap, norms = _get_cmap_norms()
    # Create a figure and adjust whitespace for subplots.
    fig = plt.figure()
    fig.subplots_adjust(hspace=.6)
    for i, extension_type in enumerate(('neither', 'min', 'max', 'both')):
        # Get the appropriate norm and use it to get colorbar boundaries.
        norm = norms[extension_type]
        boundaries = values = norm.boundaries
        for j, extendfrac in enumerate((None, 'auto', 0.1)):
            # Create a subplot.
            cax = fig.add_subplot(12, 1, i*3 + j + 1)
            # Turn off text and ticks.
            for item in cax.get_xticklabels() + cax.get_yticklabels() +\
                    cax.get_xticklines() + cax.get_yticklines():
                item.set_visible(False)
            # Generate the colorbar.
            cb = ColorbarBase(cax, cmap=cmap, norm=norm,
                    boundaries=boundaries, values=values,
                    extend=extension_type, extendfrac=extendfrac,
                    orientation='horizontal', spacing=spacing)
    # Return the figure to the caller.
    return fig 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:32,代碼來源:test_colorbar.py

示例9: test_colorbar_extension_shape

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colorbar [as 別名]
def test_colorbar_extension_shape():
    '''Test rectangular colorbar extensions.'''
    # Create figures for uniform and proportionally spaced colorbars.
    fig1 = _colorbar_extension_shape('uniform')
    fig2 = _colorbar_extension_shape('proportional') 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:7,代碼來源:test_colorbar.py

示例10: test_colorbar_extension_length

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colorbar [as 別名]
def test_colorbar_extension_length():
    '''Test variable length colorbar extensions.'''
    # Create figures for uniform and proportionally spaced colorbars.
    fig1 = _colorbar_extension_length('uniform')
    fig2 = _colorbar_extension_length('proportional') 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:7,代碼來源:test_colorbar.py

示例11: test_colorbar_single_scatter

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colorbar [as 別名]
def test_colorbar_single_scatter():
    # Issue #2642: if a path collection has only one entry,
    # the norm scaling within the colorbar must ensure a
    # finite range, otherwise a zero denominator will occur in _locate.
    plt.figure()
    x = np.arange(4)
    y = x.copy()
    z = np.ma.masked_greater(np.arange(50, 54), 50)
    cmap = plt.get_cmap('jet', 16)
    cs = plt.scatter(x, y, z, c=z, cmap=cmap)
    plt.colorbar(cs) 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:13,代碼來源:test_colorbar.py

示例12: _test_remove_from_figure

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colorbar [as 別名]
def _test_remove_from_figure(use_gridspec):
    """
    Test `remove_from_figure` with the specified ``use_gridspec`` setting
    """
    fig = plt.figure()
    ax = fig.add_subplot(111)
    sc = ax.scatter([1, 2], [3, 4], cmap="spring")
    sc.set_array(np.array([5, 6]))
    pre_figbox = np.array(ax.figbox)
    cb = fig.colorbar(sc, use_gridspec=use_gridspec)
    fig.subplots_adjust()
    cb.remove()
    fig.subplots_adjust()
    post_figbox = np.array(ax.figbox)
    assert (pre_figbox == post_figbox).all() 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:17,代碼來源:test_colorbar.py

示例13: test_remove_from_figure_with_gridspec

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colorbar [as 別名]
def test_remove_from_figure_with_gridspec():
    """
    Make sure that `remove_from_figure` removes the colorbar and properly
    restores the gridspec
    """
    _test_remove_from_figure(True) 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:8,代碼來源:test_colorbar.py

示例14: test_remove_from_figure_no_gridspec

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colorbar [as 別名]
def test_remove_from_figure_no_gridspec():
    """
    Make sure that `remove_from_figure` removes a colorbar that was created
    without modifying the gridspec
    """
    _test_remove_from_figure(False) 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:8,代碼來源:test_colorbar.py

示例15: colorbar

# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import colorbar [as 別名]
def colorbar(mappable=None, cax=None, ax=None, **kw):
    if mappable is None:
        mappable = gci()
        if mappable is None:
            raise RuntimeError('No mappable was found to use for colorbar '
                               'creation. First define a mappable such as '
                               'an image (with imshow) or a contour set ('
                               'with contourf).')
    if ax is None:
        ax = gca()

    ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw)
    return ret 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:15,代碼來源:pyplot.py


注:本文中的matplotlib.colorbar方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。