當前位置: 首頁>>代碼示例>>Python>>正文


Python cm.viridis方法代碼示例

本文整理匯總了Python中matplotlib.cm.viridis方法的典型用法代碼示例。如果您正苦於以下問題:Python cm.viridis方法的具體用法?Python cm.viridis怎麽用?Python cm.viridis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.cm的用法示例。


在下文中一共展示了cm.viridis方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: show_animation

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import viridis [as 別名]
def show_animation():
    w = 1 << 9
    h = 1 << 9
    # w = 1920
    # h = 1080
    sl = SmoothLife(h, w)
    sl.add_speckles()
    sl.step()

    fig = plt.figure()
    # Nice color maps: viridis, plasma, gray, binary, seismic, gnuplot
    im = plt.imshow(sl.field, animated=True,
                    cmap=plt.get_cmap("viridis"), aspect="equal")

    def animate(*args):
        im.set_array(sl.step())
        return (im, )

    ani = animation.FuncAnimation(fig, animate, interval=60, blit=True)
    plt.show() 
開發者ID:duckythescientist,項目名稱:SmoothLife,代碼行數:22,代碼來源:smoothlife.py

示例2: plot_mean_quantity_tgas

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import viridis [as 別名]
def plot_mean_quantity_tgas(self,tag,func=None,**kwargs):
        """
        NAME:
           plot_mean_quantity_tgas
        PURPOSE:
           Plot the mean of a quantity in the TGAS catalog on the sky
        INPUT:
           tag - tag in the TGAS data to plot
           func= if set, a function to apply to the quantity
           +healpy.mollview plotting kwargs
        OUTPUT:
           plot to output device
        HISTORY:
           2017-01-17 - Written - Bovy (UofT/CCA)
        """
        mq= self._compute_mean_quantity_tgas(tag,func=func)
        cmap= cm.viridis
        cmap.set_under('w')
        kwargs['unit']= kwargs.get('unit',tag)
        kwargs['title']= kwargs.get('title',"")
        healpy.mollview(mq,nest=True,cmap=cmap,**kwargs)
        return None 
開發者ID:jobovy,項目名稱:gaia_tools,代碼行數:24,代碼來源:tgasSelect.py

示例3: create_color_bar

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import viridis [as 別名]
def create_color_bar(n_iterations,bar_label = "Iteration"):
    fig = plt.figure(figsize=(2, 4.5))
    ax1 = fig.add_axes([0.05, 0.05, 0.2, 0.9])

    # Set the colormap and norm to correspond to the data for which
    # the colorbar will be used.
    cmap = mpl.cm.viridis
    norm = mpl.colors.Normalize(vmin=1, vmax=n_iterations)

    # ColorbarBase derives from ScalarMappable and puts a colorbar
    # in a specified axes, so it has everything needed for a
    # standalone colorbar.  There are many more kwargs, but the
    # following gives a basic continuous colorbar with ticks
    # and labels.
    cb1 = mpl.colorbar.ColorbarBase(ax1, cmap=cmap,
	                norm=norm,
	                orientation='vertical')
    cb1.set_label(bar_label)

    return fig, ax1 
開發者ID:befelix,項目名稱:safe-exploration,代碼行數:22,代碼來源:create_exploration_plots_paper.py

示例4: plot_sample_set

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import viridis [as 別名]
def plot_sample_set(x_train,z_all,env):
    """ plot the sample set"""
    
    s_train = x_train[:,:env.n_s]
    n_train = np.shape(s_train)[0]
    
    s_expl = z_all[:,:env.n_s]
    n_it = np.shape(s_expl)[0]
    fig, ax = env.plot_safety_bounds(color = "r")
    
    c_spectrum = viridis(np.arange(n_it))
    # plot initial dataset    
    for i in range(n_train):
        ax = env.plot_state(ax,s_train[i,:env.n_s],color = c_spectrum[0])
    
    # plot the data gatehred
    for i in range(n_it):
        ax = env.plot_state(ax,s_expl[i,:env.n_s],color = c_spectrum[i])
        
    return fig, ax 
開發者ID:befelix,項目名稱:safe-exploration,代碼行數:22,代碼來源:create_dynamic_expl_plots.py

示例5: plot_sample_set

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import viridis [as 別名]
def plot_sample_set(x_train,z_all,env):
    """ plot the sample set"""
    
    s_train = x_train[:,:env.n_s]
    n_train = np.shape(s_train)[0]
    
    s_expl = z_all[:,:env.n_s]
    n_it = np.shape(s_expl)[0]
    fig, ax = env.plot_safety_bounds(color = "r")
    
    c_spectrum = viridis(np.arange(n_it))
    # plot initial dataset    
    for i in range(n_train):
        ax = env.plot_state(ax,s_train[i,:env.n_s],color = c_spectrum[0])
    
    # plot the data gatehred
    for i in range(n_it)        :
        ax = env.plot_state(ax,s_expl[i,:env.n_s],color = c_spectrum[i])
        
    return fig, ax 
開發者ID:befelix,項目名稱:safe-exploration,代碼行數:22,代碼來源:create_static_expl_plots.py

示例6: _get_next_data

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import viridis [as 別名]
def _get_next_data(self):
        """Grabs a fresh pair of source and target data points.
        """
        self._pair_idx += 1
        self.imgs, labels, center = next(self._dloader)
        self.center = center[0]
        label = labels[0]
        self.xs, self.xt = self.imgs[:, :self._num_channels, :, :], self.imgs[:, self._num_channels:, :, :]
        if self._num_channels == 4:
            self._xs_np = ml.tensor2ndarray(self.xs[:, :3], [self._color_mean * 3, self._color_std * 3])
            self._xt_np = ml.tensor2ndarray(self.xt[:, :3], [self._color_mean * 3, self._color_std * 3])
        else:
            self._xs_np = ml.tensor2ndarray(self.xs[:, :1], [self._color_mean, self._color_std], False)
            self._xt_np = ml.tensor2ndarray(self.xt[:, :1], [self._color_mean, self._color_std], False)
            self._xs_np = np.uint8(cm.viridis(self._xs_np) * 255)[..., :3]
            self._xt_np = np.uint8(cm.viridis(self._xt_np) * 255)[..., :3]
        source_idxs = label[:, 0:2]
        target_idxs = label[:, 2:4]
        rot_idx = label[:, 4]
        is_match = label[:, 5]
        self.best_rot_idx = rot_idx[0].item()
        mask = (is_match == 1) & (rot_idx == self.best_rot_idx)
        self.source_pixel_idxs = source_idxs[mask].numpy()
        self.target_pixel_idxs = target_idxs[mask].numpy() 
開發者ID:kevinzakka,項目名稱:form2fit,代碼行數:26,代碼來源:main.py

示例7: test

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import viridis [as 別名]
def test():
    n = int(1e6)
    dataset = GaussianGridDataset(n)
    samples = dataset.data

    fig, ax = plt.subplots(1, 1, figsize=(5, 5))

    # ax.hist2d(samples[:, 0], samples[:, 1],
    #               range=[[0, 1], [0, 1]], bins=512, cmap=cm.viridis)
    ax.hist2d(samples[:, 0], samples[:, 1], range=[[-4, 4], [-4, 4]], bins=512,
              cmap=cm.viridis)

    ax.set_xticks([])
    ax.set_yticks([])

    plt.show()
    # path = os.path.join(utils.get_output_root(), 'plane-test.png')
    # plt.savefig(path, rasterized=True) 
開發者ID:conormdurkan,項目名稱:autoregressive-energy-machines,代碼行數:20,代碼來源:plane.py

示例8: imshow

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import viridis [as 別名]
def imshow (Z, vmin=None, vmax=None, cmap=viridis, show_cmap=True):
    ''' Show a 2D numpy array using terminal colors '''

    Z = np.atleast_2d(Z)
    
    if len(Z.shape) != 2:
        print("Cannot display non 2D array")
        return

    vmin = vmin or Z.min()
    vmax = vmax or Z.max()

    # Build initialization string that setup terminal colors
    init = ''
    for i in range(240):
        v = i/240 
        r,g,b,a = cmap(v)
        init += "\x1b]4;%d;rgb:%02x/%02x/%02x\x1b\\" % (16+i, int(r*255),int(g*255),int(b*255))

    # Build array data string
    data = ''
    for i in range(Z.shape[0]):
        for j in range(Z.shape[1]):
            c = 16 + int( ((Z[Z.shape[0]-i-1,j]-vmin) / (vmax-vmin))*239)
            if (c < 16):
                c=16
            elif (c > 255):
                c=255
            data += "\x1b[48;5;%dm  " % c
            u = vmax - (i/float(max(Z.shape[0]-1,1))) * ((vmax-vmin))
        if show_cmap:
            data += "\x1b[0m  "
            data += "\x1b[48;5;%dm  " % (16 + (1-i/float(Z.shape[0]))*239)
            data += "\x1b[0m %+.2f" % u
        data += "\n"

    sys.stdout.write(init+'\n')
    sys.stdout.write(data+'\n') 
開發者ID:ASPP,項目名稱:ASPP-2018-numpy,代碼行數:40,代碼來源:imshow.py

示例9: save_animation

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import viridis [as 別名]
def save_animation():
    w = 1 << 8
    h = 1 << 8
    # w = 1920
    # h = 1080
    sl = SmoothLife(h, w)
    sl.add_speckles()

    # Matplotlib shoves a horrible border on animation saves.
    # We'll do it manually. Ugh

    from skvideo.io import FFmpegWriter
    from matplotlib import cm

    fps = 10
    frames = 100
    w = FFmpegWriter("smoothlife.mp4", inputdict={"-r": str(fps)})
    for i in range(frames):
        frame = cm.viridis(sl.field)
        frame *= 255
        frame = frame.astype("uint8")
        w.writeFrame(frame)
        sl.step()
    w.close()

    # Also, webm output isn't working for me,
    # so I have to manually convert. Ugh
    # ffmpeg -i smoothlife.mp4 -c:v libvpx -b:v 2M smoothlife.webm 
開發者ID:duckythescientist,項目名稱:SmoothLife,代碼行數:30,代碼來源:smoothlife.py

示例10: plot_2mass

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import viridis [as 別名]
def plot_2mass(self,jmin=None,jmax=None,
                   jkmin=None,jkmax=None,
                   cut=False,
                   **kwargs):
        """
        NAME:
           plot_2mass
        PURPOSE:
           Plot star counts in 2MASS
        INPUT:
           If the following are not set, fullsky will be plotted:
              jmin, jmax= minimum and maximum Jt
              jkmin, jkmax= minimum and maximum J-Ks
           cut= (False) if True, cut to the 'good' sky
           +healpy.mollview plotting kwargs
        OUTPUT:
           plot to output device
        HISTORY:
           2017-01-17 - Written - Bovy (UofT/CCA)
        """
        # Select stars
        if jmin is None or jmax is None \
                or jkmin is None or jkmax is None:
            pt= _2mc_skyonly[1]
        else:
            pindx= (_2mc[0] > jmin)*(_2mc[0] < jmax)\
                *(_2mc[1] > jkmin)*(_2mc[1] < jkmax)
            pt, e= numpy.histogram(_2mc[2][pindx],
                                   range=[-0.5,_BASE_NPIX-0.5],
                                   bins=_BASE_NPIX)
        pt= numpy.log10(pt)
        if cut: pt[self._exclude_mask_skyonly]= healpy.UNSEEN
        cmap= cm.viridis
        cmap.set_under('w')
        kwargs['unit']= r'$\log_{10}\mathrm{number\ counts}$'
        kwargs['title']= kwargs.get('title',"")
        healpy.mollview(pt,nest=True,cmap=cmap,**kwargs)
        return None 
開發者ID:jobovy,項目名稱:gaia_tools,代碼行數:40,代碼來源:tgasSelect.py

示例11: plot_tgas

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import viridis [as 別名]
def plot_tgas(self,jmin=None,jmax=None,
                  jkmin=None,jkmax=None,
                  cut=False,
                  **kwargs):
        """
        NAME:
           plot_tgas
        PURPOSE:
           Plot star counts in TGAS
        INPUT:
           If the following are not set, fullsky will be plotted:
              jmin, jmax= minimum and maximum Jt
              jkmin, jkmax= minimum and maximum J-Ks
           cut= (False) if True, cut to the 'good' sky
           +healpy.mollview plotting kwargs
        OUTPUT:
           plot to output device
        HISTORY:
           2017-01-17 - Written - Bovy (UofT/CCA)
        """
        # Select stars
        if jmin is None or jmax is None \
                or jkmin is None or jkmax is None:
            pt= self._nstar_tgas_skyonly
        else:
            pindx= (self._full_jt > jmin)*(self._full_jt < jmax)\
                *(self._full_jk > jkmin)*(self._full_jk < jkmax)
            pt, e= numpy.histogram((self._full_tgas['source_id']/2**(35.\
                      +2*(12.-numpy.log2(_BASE_NSIDE)))).astype('int')[pindx],
                                   range=[-0.5,_BASE_NPIX-0.5],
                                   bins=_BASE_NPIX)
        pt= numpy.log10(pt)
        if cut: pt[self._exclude_mask_skyonly]= healpy.UNSEEN
        cmap= cm.viridis
        cmap.set_under('w')
        kwargs['unit']= r'$\log_{10}\mathrm{number\ counts}$'
        kwargs['title']= kwargs.get('title',"")
        healpy.mollview(pt,nest=True,cmap=cmap,**kwargs)
        return None 
開發者ID:jobovy,項目名稱:gaia_tools,代碼行數:41,代碼來源:tgasSelect.py

示例12: plot_sample_set

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import viridis [as 別名]
def plot_sample_set(z_all,env,y_label = False, x_train = None):
    """ plot the sample set"""
    
    
    
    s_expl = z_all[:,:env.n_s]
    n_it = np.shape(s_expl)[0]
    fig, ax = env.plot_safety_bounds(color = "r")
    
    c_spectrum = viridis(np.arange(n_it))
    # plot initial dataset    
    if not x_train is None:
	s_train = x_train[:,:env.n_s]
        n_train = np.shape(s_train)[0]
        for i in range(n_train):
            ax = env.plot_state(ax,s_train[i,:env.n_s],color = c_spectrum[0])
    
    # plot the data gatehred
    for i in range(n_it):
        ax = env.plot_state(ax,s_expl[i,:env.n_s],color = c_spectrum[i])
        
    ax.set_xlabel("Angular velocity $\dot{\\theta}$")
    print(y_label)
    if y_label:
	print("??")
	ax.set_ylabel("Angle $\\theta$")
    fig.set_size_inches(3.6,4.5)
    return fig, ax 
開發者ID:befelix,項目名稱:safe-exploration,代碼行數:30,代碼來源:create_exploration_plots_paper.py

示例13: _draw_rotations

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import viridis [as 別名]
def _draw_rotations(self, init=False, heatmap=True):
        def _hist_eq(img):
            from skimage import exposure

            img_cdf, bin_centers = exposure.cumulative_distribution(img)
            return np.interp(img, bin_centers, img_cdf)

        for col in range(5):
            for row in range(4):
                offset = col * 4 + row
                if init:
                    img = self._zeros.copy()
                else:
                    if heatmap:
                        img = self.heatmaps[offset].copy()
                        img = img / img.max()
                        img = _hist_eq(img)
                        img = np.uint8(cm.viridis(img) * 255)[..., :3]
                        img = img.copy()
                    else:
                        img = misc.rotate_img(self._xs_np, -(360 / 20) * offset, center=(self.center[1], self.center[0]))
                        img = img.copy()
                    if offset == self._uv[-1]:
                        img[
                            self._uv[0] - 1 : self._uv[0] + 1,
                            self._uv[1] - 1 : self._uv[1] + 1,
                        ] = [255, 0, 0]
                        self._add_border_clr(img, [255, 0, 0])
                    if offset == self.best_rot_idx:
                        self._add_border_clr(img, [0, 255, 0])
                self._img = QImage(
                    img.data, self._w, self._h, self._c * self._w, QImage.Format_RGB888
                )
                pixmap = QPixmap.fromImage(self._img)
                self._grid_widgets[offset].setPixmap(pixmap)
                self._grid_widgets[offset].setScaledContents(True) 
開發者ID:kevinzakka,項目名稱:form2fit,代碼行數:38,代碼來源:main.py

示例14: _string_to_cmap

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import viridis [as 別名]
def _string_to_cmap(cm_name):
    """Return colormap given name.

    Parameters:
        cm_name (str):
            Name of colormap.

    Returns:
        `matplotlib.cm <http://matplotlib.org/api/cm_api.html>`_ (colormap)
        object
    """
    if isinstance(cm_name, str):
        if 'linearlab' in cm_name:
            try:
                cmap, cmap_r = linearlab()
            except IOError:
                cmap = cm.viridis
            else:
                if '_r' in cm_name:
                    cmap = cmap_r
        else:
            cmap = cm.get_cmap(cm_name)
    elif isinstance(cm_name, ListedColormap) or isinstance(cm_name, LinearSegmentedColormap):
        cmap = cm_name
    else:
        raise MarvinError('{} is not a valid cmap'.format(cm_name))

    return cmap 
開發者ID:sdss,項目名稱:marvin,代碼行數:30,代碼來源:colorbar.py

示例15: plotSubFigure

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import viridis [as 別名]
def plotSubFigure(X, Y, Z, subfig, type_):
    fig = plt.gcf()
    ax = fig.add_subplot(1, 3, subfig, projection='3d')
    #ax = fig.gca(projection='3d')
    if type_ == "colormap":
        ax.plot_surface(X, Y, Z, cmap=cm.viridis, rstride=1, cstride=1,
                        shade=True, linewidth=0, antialiased=False)
    else:
        ax.plot_surface(X, Y, Z, color=[0.7, 0.7, 0.7], rstride=1, cstride=1,
                        shade=True, linewidth=0, antialiased=False)

    ax.set_aspect("equal")

    max_range = np.array([X.max()-X.min(), Y.max()-Y.min(), Z.max()-Z.min()]).max() / 2.0 * 0.6
    mid_x = (X.max()+X.min()) * 0.5
    mid_y = (Y.max()+Y.min()) * 0.5
    mid_z = (Z.max()+Z.min()) * 0.5
    ax.set_xlim(mid_x - max_range, mid_x + max_range)
    ax.set_ylim(mid_y - max_range, mid_y + max_range)
    ax.set_zlim(mid_z - max_range, mid_z + max_range)

    az, el = 90, 90
    if type_ == "top":
        az = 130
    elif type_ == "side":
        az, el = 40, 0

    ax.view_init(az, el)
    fig.subplots_adjust(left=0, right=1, bottom=0, top=1)

    plt.grid(False)
    plt.axis('off') 
開發者ID:soravux,項目名稱:skylibs,代碼行數:34,代碼來源:display.py


注:本文中的matplotlib.cm.viridis方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。