當前位置: 首頁>>代碼示例>>Python>>正文


Python cm.rainbow方法代碼示例

本文整理匯總了Python中matplotlib.cm.rainbow方法的典型用法代碼示例。如果您正苦於以下問題:Python cm.rainbow方法的具體用法?Python cm.rainbow怎麽用?Python cm.rainbow使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.cm的用法示例。


在下文中一共展示了cm.rainbow方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: draw_buffer

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import rainbow [as 別名]
def draw_buffer(self):
        self.buffer_figure, self.buffer_ax = plt.subplots()
        self.lineIN, = self.buffer_ax.plot([1] * 2, [1] * 2, color='#000000', ls="None", label="IN", marker='o',
                                           animated=True)
        self.lineOUT, = self.buffer_ax.plot([1] * 2, [1] * 2, color='#CCCCCC', ls="None", label="OUT", marker='o',
                                            animated=True)
        self.buffer_figure.suptitle("Buffer Status", size=16)
        plt.legend(loc=2, numpoints=1)
        total_peers = self.number_of_monitors + self.number_of_peers + self.number_of_malicious
        self.buffer_colors = cm.rainbow(np.linspace(0, 1, total_peers))
        plt.axis([0, total_peers + 1, 0, self.get_buffer_size()])
        plt.xticks(range(0, total_peers + 1, 1))
        self.buffer_order = {}
        self.buffer_index = 1
        self.buffer_labels = self.buffer_ax.get_xticks().tolist()
        plt.grid()
        self.buffer_figure.canvas.draw() 
開發者ID:P2PSP,項目名稱:simulator,代碼行數:19,代碼來源:play.py

示例2: ptf

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import rainbow [as 別名]
def ptf(self):
		"""
		Phase transfer function
		"""
		PSF = self.__psfcaculator__()
		PTF = __fftshift__(__fft2__(PSF))
		PTF = __np__.angle(PTF)
		b = 400
		R = (200)**2
		for i in range(b):
			for j in range(b):
				if (i-b/2)**2+(j-b/2)**2>R:
					PTF[i][j] = 0
		__plt__.imshow(abs(PTF),cmap=__cm__.rainbow)
		__plt__.colorbar()
		__plt__.show()
		return 0 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:19,代碼來源:zernike.py

示例3: plot_shape

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import rainbow [as 別名]
def plot_shape(xys, z1, z2, ax, scale, scatter, symm_axis, **kwargs):
#    mx = max([y for (x, y) in m])
#    mn = min([y for (x, y) in m])
    xscl = scale# / (mx - mn)
    yscl = scale# / (mx - mn)
#    ax.scatter(z1, z2)
    if scatter:
        if 'c' not in kwargs:
            kwargs['c'] = cm.rainbow(np.linspace(0,1,xys.shape[0]))
#        ax.plot( *zip(*[(x * xscl + z1, y * yscl + z2) for (x, y) in xys]), lw=.2, c='b')
        ax.scatter( *zip(*[(x * xscl + z1, y * yscl + z2) for (x, y) in xys]), edgecolors='none', **kwargs)
    else:
        ax.plot( *zip(*[(x * xscl + z1, y * yscl + z2) for (x, y) in xys]), **kwargs)
        
    if symm_axis == 'y':
#        ax.plot( *zip(*[(-x * xscl + z1, y * yscl + z2) for (x, y) in xys]), lw=.2, c='b')
        plt.fill_betweenx( *zip(*[(y * yscl + z2, -x * xscl + z1, x * xscl + z1)
                          for (x, y) in xys]), color='gray', alpha=.2)
    elif symm_axis == 'x':
#        ax.plot( *zip(*[(x * xscl + z1, -y * yscl + z2) for (x, y) in xys]), lw=.2, c='b')
        plt.fill_between( *zip(*[(x * xscl + z1, -y * yscl + z2, y * yscl + z2)
                          for (x, y) in xys]), color='gray', alpha=.2) 
開發者ID:IDEALLab,項目名稱:airfoil-opt-gan,代碼行數:24,代碼來源:shape_plot.py

示例4: plot_clustered_data

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import rainbow [as 別名]
def plot_clustered_data(points, c_means, c_assignments):
    """Plots the cluster-colored data and the cluster means"""
    colors = cm.rainbow(np.linspace(0, 1, CLUSTERS))

    for cluster, color in zip(range(CLUSTERS), colors):
        c_points = points[c_assignments == cluster]
        plt.plot(c_points[:, 0], c_points[:, 1], ".", color=color, zorder=0)
        plt.plot(c_means[cluster, 0], c_means[cluster, 1], ".", color="black", zorder=1)

    plt.show()


# PREPARING DATA

# generating DATA_POINTS points from a GMM with CLUSTERS components 
開發者ID:aakhundov,項目名稱:tf-example-models,代碼行數:17,代碼來源:tf_kmeans.py

示例5: cluster_body

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import rainbow [as 別名]
def cluster_body(net, cluster_data, device, save_path):
    data, characters = cluster_data[0], cluster_data[2]
    data = data[:, :, 0, :, :]
    # data = data.reshape(-1, data.shape[2], data.shape[3], data.shape[4])

    nr_mv, nr_char = data.shape[0], data.shape[1]
    labels = np.arange(0, nr_char).reshape(1, -1)
    labels = np.tile(labels, (nr_mv, 1)).reshape(-1)
    
    if hasattr(net, 'static_encoder'):
        features = net.static_encoder(data.contiguous().view(-1, data.shape[2], data.shape[3])[:, :-2, :].to(device))
    else:
        features = net.body_encoder(data.contiguous().view(-1, data.shape[2], data.shape[3])[:, :-2, :].to(device))
    features = features.detach().cpu().numpy().reshape(features.shape[0], -1)

    features_2d = tsne_on_pca(features, is_PCA=False)
    features_2d = features_2d.reshape(nr_mv, nr_char, -1)

    plt.figure(figsize=(7, 4))
    colors = cm.rainbow(np.linspace(0, 1, nr_char))
    for i in range(nr_char):
        x = features_2d[:, i, 0]
        y = features_2d[:, i, 1]
        plt.scatter(x, y, c=colors[i], label=characters[i])

    plt.legend(bbox_to_anchor=(1.04, 1), borderaxespad=0)
    plt.tight_layout(rect=[0,0,0.75,1])
    plt.savefig(save_path) 
開發者ID:ChrisWu1997,項目名稱:2D-Motion-Retargeting,代碼行數:30,代碼來源:cluster.py

示例6: cluster_view

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import rainbow [as 別名]
def cluster_view(net, cluster_data, device, save_path):
    data, views = cluster_data[0], cluster_data[3]
    idx = np.random.randint(data.shape[1] - 1)  # np.linspace(0, data.shape[1] - 1, 4, dtype=int).tolist()
    data = data[:, idx, :, :, :]

    nr_mc, nr_view = data.shape[0], data.shape[1]
    labels = np.arange(0, nr_view).reshape(1, -1)
    labels = np.tile(labels, (nr_mc, 1)).reshape(-1)
    
    if hasattr(net, 'static_encoder'):
        features = net.static_encoder(data.contiguous().view(-1, data.shape[2], data.shape[3])[:, :-2, :].to(device))
    else:
        features = net.view_encoder(data.contiguous().view(-1, data.shape[2], data.shape[3])[:, :-2, :].to(device))
    features = features.detach().cpu().numpy().reshape(features.shape[0], -1)

    features_2d = tsne_on_pca(features, is_PCA=False)
    features_2d = features_2d.reshape(nr_mc, nr_view, -1)

    plt.figure(figsize=(7, 4))
    colors = cm.rainbow(np.linspace(0, 1, nr_view))
    for i in range(nr_view):
        x = features_2d[:, i, 0]
        y = features_2d[:, i, 1]
        plt.scatter(x, y, c=colors[i], label=views[i])

    plt.legend(bbox_to_anchor=(1.04, 1), borderaxespad=0)
    plt.tight_layout(rect=[0, 0, 0.75, 1])
    plt.savefig(save_path) 
開發者ID:ChrisWu1997,項目名稱:2D-Motion-Retargeting,代碼行數:30,代碼來源:cluster.py

示例7: cluster_motion

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import rainbow [as 別名]
def cluster_motion(net, cluster_data, device, save_path, nr_anims=15, mode='both'):
    data, animations = cluster_data[0], cluster_data[1]
    idx = np.linspace(0, data.shape[0] - 1, nr_anims, dtype=int).tolist()
    data = data[idx]
    animations = animations[idx]
    if mode == 'body':
        data = data[:, :, 0, :, :].reshape(nr_anims, -1, data.shape[3], data.shape[4])
    elif mode == 'view':
        data = data[:, 3, :, :, :].reshape(nr_anims, -1, data.shape[3], data.shape[4])
    else:
        data = data[:, :4, ::2, :, :].reshape(nr_anims, -1, data.shape[3], data.shape[4])

    nr_anims, nr_cv = data.shape[:2]
    labels = np.arange(0, nr_anims).reshape(-1, 1)
    labels = np.tile(labels, (1, nr_cv)).reshape(-1)
    
    features = net.mot_encoder(data.contiguous().view(-1, data.shape[2], data.shape[3]).to(device))
    features = features.detach().cpu().numpy().reshape(features.shape[0], -1)

    features_2d = tsne_on_pca(features)
    features_2d = features_2d.reshape(nr_anims, nr_cv, -1)
    if features_2d.shape[1] < 5:
        features_2d = np.tile(features_2d, (1, 2, 1))

    plt.figure(figsize=(8, 4))
    colors = cm.rainbow(np.linspace(0, 1, nr_anims))
    for i in range(nr_anims):
        x = features_2d[i, :, 0]
        y = features_2d[i, :, 1]
        plt.scatter(x, y, c=colors[i], label=animations[i])

    plt.legend(bbox_to_anchor=(1.04, 1), borderaxespad=0)
    plt.tight_layout(rect=[0,0,0.8,1])
    plt.savefig(save_path) 
開發者ID:ChrisWu1997,項目名稱:2D-Motion-Retargeting,代碼行數:36,代碼來源:cluster.py

示例8: draw_buffer

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import rainbow [as 別名]
def draw_buffer(self):
        self.buff_win = pg.GraphicsLayoutWidget()
        self.buff_win.setWindowTitle('Buffer Status')
        self.buff_win.resize(800, 700)

        self.total_peers = self.number_of_monitors + self.number_of_peers + self.number_of_malicious
        self.p4 = self.buff_win.addPlot()
        self.p4.showGrid(x=True, y=True, alpha=100)   # To show grid lines across x axis and y axis
        leftaxis = self.p4.getAxis('left')  # get left axis i.e y axis
        leftaxis.setTickSpacing(5, 1)    # to set ticks at a interval of 5 and grid lines at 1 space

        # Get different colors using matplotlib library
        if self.total_peers < 8:
            colors = cm.Set2(np.linspace(0, 1, 8))
        elif self.total_peers < 12:
            colors = cm.Set3(np.linspace(0, 1, 12))
        else:
            colors = cm.rainbow(np.linspace(0, 1, self.total_peers+1))
        self.QColors = [pg.hsvColor(color[0], color[1], color[2], color[3])
                        for color in colors]   # Create QtColors, each color would represent a peer

        self.Data = []  # To represent buffer out  i.e outgoing data from buffer
        self.OutData = []   # To represent buffer in i.e incoming data in buffer

        # a single line would reperesent a single color or peer, hence we would not need to pass a list of brushes
        self.lineIN = [None]*self.total_peers
        for ix in range(self.total_peers):
            self.lineIN[ix] = self.p4.plot(pen=(None), symbolBrush=self.QColors[ix], name='IN', symbol='o', clear=False)
            self.Data.append(set())
            self.OutData.append(set())

        # similiarly one line per peer to represent outgoinf data from buffer
        self.lineOUT = self.p4.plot(pen=(None), symbolBrush=mkColor('#CCCCCC'), name='OUT', symbol='o', clear=False)
        self.p4.setRange(xRange=[0, self.total_peers], yRange=[0, self.get_buffer_size()])
        self.buff_win.show()    # To actually show create window

        self.buffer_order = {}
        self.buffer_index = 0
        self.buffer_labels = []
        self.lastUpdate = pg.ptime.time()
        self.avgFps = 0.0 
開發者ID:P2PSP,項目名稱:simulator,代碼行數:43,代碼來源:play.py

示例9: ptf

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import rainbow [as 別名]
def ptf(self):
		"""
		Phase transfer function
		"""
		PSF = self.__psfcaculator__()
		PTF = __fftshift__(__fft2__(PSF))
		PTF = __np__.angle(PTF)
		l1 = 100
		d = 400
		A = __np__.zeros([d,d])
		A[d//2-l1//2+1:d//2+l1//2+1,d//2-l1//2+1:d//2+l1//2+1] = PTF[d//2-l1//2+1:d//2+l1//2+1,d//2-l1//2+1:d//2+l1//2+1]
		__plt__.imshow(abs(A),cmap=__cm__.rainbow)
		__plt__.colorbar()
		__plt__.show()
		return 0 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:17,代碼來源:zernike_rec.py

示例10: plot_with_labels

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import rainbow [as 別名]
def plot_with_labels(lowDWeights, labels,sz):
    plt.cla()
    X_t0,Y_t0 = lowDWeights[0][:,0],lowDWeights[0][:,1]
    X_t1,Y_t1 = lowDWeights[1][:,0],lowDWeights[1][:,1]
    for idx,(x_t0,y_t0,x_t1,y_t1,lab) in enumerate(zip(X_t0,Y_t0,X_t1,Y_t1,labels)):
        c = cm.rainbow(int(255 * idx/sz))
        plt.text(x_t0,y_t0,lab,backgroundcolor=c,fontsize=9)
        plt.text(x_t1,y_t1,lab,backgroundcolor=c,fontsize=9)
    plt.xlim(X_t0.min(), X_t0.max());plt.ylim(Y_t0.min(), Y_t1.max());
    plt.title('Visualize last layer');plt.show();plt.pause(0.01)
        #for x, y, s in zip(X, Y, labels):
        #c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9) 
開發者ID:gmayday1997,項目名稱:SceneChangeDet,代碼行數:14,代碼來源:tsne_visual.py

示例11: plot_with_labels_feat_cat

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import rainbow [as 別名]
def plot_with_labels_feat_cat(lowDWeights, labels,save_dir,title):
    plt.cla()
    X,Y = lowDWeights[:,0],lowDWeights[:,1]
    #plt.scatter(X,Y)
    for idx,(x,y,lab) in enumerate(zip(X,Y,labels)):
        color = cm.rainbow(int(255 * lab/2))
        #plt.scatter(x,y,color)
        plt.text(x,y,lab,backgroundcolor=color,fontsize=0)
    plt.xlim(X.min() *2 , X.max() *2);plt.ylim(Y.min()*2, Y.max()*2)
    plt.title(title)
    #plt.show();plt.pause(0.01)
    plt.savefig(save_dir)
    print save_dir
    #for x, y, s in zip(X, Y, labels):
    #c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9) 
開發者ID:gmayday1997,項目名稱:SceneChangeDet,代碼行數:17,代碼來源:tsne_visual.py

示例12: plot_with_labels_feat_cat_without_text

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import rainbow [as 別名]
def plot_with_labels_feat_cat_without_text(lowDWeights, labels,save_dir):
    plt.cla()
    X,Y = lowDWeights[:,0],lowDWeights[:,1]
    for idx,(x,y,lab) in enumerate(zip(X,Y,labels)):
        #c = cm.rainbow(int(255 * lab/2))
        if lab == 0:
           plt.plot(x,y,'b')
        if lab == 1:
           plt.plot(x,y,'r')
        #plt.text(x,y,lab,backgroundcolor=c,fontsize=9)
    plt.xlim(X.min() *2 , X.max() *2);plt.ylim(Y.min()*2, Y.max()*2)
    plt.title('Visualize last layer')
    #plt.show();plt.pause(0.01)
    plt.savefig(save_dir)
    print save_dir 
開發者ID:gmayday1997,項目名稱:SceneChangeDet,代碼行數:17,代碼來源:tsne_visual.py

示例13: rainbow_gradient

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import rainbow [as 別名]
def rainbow_gradient(cls, n):
        cmap = cm.rainbow(np.linspace(0.0, 1.0, n))
        R = list(map(lambda x: math.floor(x * 255), cmap[:, 0]))
        G = list(map(lambda x: math.floor(x * 255), cmap[:, 1]))
        B = list(map(lambda x: math.floor(x * 255), cmap[:, 2]))
        return cls.__color_dict(list(zip(B, G, R))) 
開發者ID:haruiz,項目名稱:CvStudio,代碼行數:8,代碼來源:color_utilities.py

示例14: color_scatter

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import rainbow [as 別名]
def color_scatter(ax, xs, ys):
    colors = cm.rainbow(np.linspace(0, 1, len(ys)))
    for x, y, c in zip(xs, ys, colors):
        ax.scatter(x, y, color=c) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:6,代碼來源:ica.py

示例15: plot_reduced_transferValues

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import rainbow [as 別名]
def plot_reduced_transferValues(transferValues, cls_integers):
    # Create a color-map with a different color for each class.
    c_map = color_map.rainbow(np.linspace(0.0, 1.0, num_classes))

    # Getting the color for each sample.
    colors = c_map[cls_integers]

    # Getting the x and y values.
    x_val = transferValues[:, 0]
    y_val = transferValues[:, 1]

    # Plot the transfer values in a scatter plot
    plt.scatter(x_val, y_val, color=colors)
    plt.show() 
開發者ID:PacktPublishing,項目名稱:Deep-Learning-By-Example,代碼行數:16,代碼來源:cifar_10_revisted_transfer_learning.py


注:本文中的matplotlib.cm.rainbow方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。