本文整理匯總了Python中matplotlib.cm.plasma方法的典型用法代碼示例。如果您正苦於以下問題:Python cm.plasma方法的具體用法?Python cm.plasma怎麽用?Python cm.plasma使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.cm
的用法示例。
在下文中一共展示了cm.plasma方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_molecular_error_distribution_plots
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import plasma [as 別名]
def create_molecular_error_distribution_plots(collection_df, directory_path, file_base_name, subset_of_method_ids):
# Ridge plot using all predictions
ridge_plot(df=collection_df, by = "Molecule ID", column = "$\Delta$logP error (calc - exp)", figsize=(4, 6),
colormap=cm.plasma)
plt.savefig(directory_path + "/" + file_base_name +"_all_methods.pdf")
# Ridge plot using only consistently well-performing methods
collection_subset_df = collection_df[collection_df["receipt_id"].isin(subset_of_method_ids)].reset_index(drop=True)
ridge_plot(df=collection_subset_df, by = "Molecule ID", column = "$\Delta$logP error (calc - exp)", figsize=(4, 6),
colormap=cm.plasma)
plt.savefig(directory_path + "/" + file_base_name +"_well_performing_methods.pdf")
示例2: create_category_error_distribution_plots
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import plasma [as 別名]
def create_category_error_distribution_plots(collection_df, directory_path, file_base_name):
# Ridge plot using all predictions
ridge_plot_wo_overlap(df=collection_df, by = "reassigned category", column = "$\Delta$logP error (calc - exp)", figsize=(4, 4),
colormap=cm.plasma)
plt.savefig(directory_path + "/" + file_base_name +".pdf")
示例3: create_molecular_error_distribution_plots
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import plasma [as 別名]
def create_molecular_error_distribution_plots(collection_df, directory_path, file_base_name):
# Ridge plot using all predictions
ridge_plot(df=collection_df, by = "Molecule ID", column = "$\Delta$logP error (calc - exp)", figsize=(4, 6),
colormap=cm.plasma)
plt.savefig(directory_path + "/" + file_base_name +"_all_methods.pdf")
# =============================================================================
# MAIN
# =============================================================================
示例4: visflow
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import plasma [as 別名]
def visflow(flow_img):
# H x W x 2
flow_img = convert2np(flow_img)
from matplotlib import cm
x_img = flow_img[:, :, 0]
def color_within_01(vals):
# vals is Nx1 in [-1, 1] (but could be larger)
vals = np.clip(vals, -1, 1)
# make [0, 1]
vals = (vals + 1) / 2.
# Append dummy end vals for consistent coloring
weights = np.hstack([vals, np.array([0, 1])])
# Drop the dummy colors
colors = cm.plasma(weights)[:-2, :3]
return colors
# x_color = cm.plasma(x_img.reshape(-1))[:, :3]
x_color = color_within_01(x_img.reshape(-1))
x_color = x_color.reshape([x_img.shape[0], x_img.shape[1], 3])
y_img = flow_img[:, :, 1]
# y_color = cm.plasma(y_img.reshape(-1))[:, :3]
y_color = color_within_01(y_img.reshape(-1))
y_color = y_color.reshape([y_img.shape[0], y_img.shape[1], 3])
vis = np.vstack([x_color, y_color])
# import matplotlib.pyplot as plt
# plt.ion()
# plt.imshow(x_color)
return vis
示例5: process_results
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import plasma [as 別名]
def process_results(self):
""" Sync the results up accoding to the sim time and determine
which rates are stable and instable in the sim
Returns Array or RPYs, Max rate that is stable, color for each RPY point, """
threshold = 0.001 #1mm
instable = []
stable = []
d_range = self.max_d_sum - self.min_d_sum
print ("Min=", self.min_d_sum)
print ("Max=", self.max_d_sum)
print ("D range=", d_range)
norm = matplotlib.colors.Normalize(vmin=self.min_d_sum, vmax=self.max_d_sum, clip=True)
mapper = cm.ScalarMappable(norm=norm, cmap=cm.plasma)
#print (self.data_pose)
max_r = 0
colors = []
rates = []
ds = [] #array of distance sums
for i in range(len(self.data_pose)):
ac_trial = np.array(self.data_ac[i])
for pose in self.data_pose[i]:
t = pose[0]
d_sum = pose[1]
found_row = ac_trial[np.where(ac_trial[:,0] == t)]
if len(found_row) > 0:
rate = found_row[0][1:]
#print ("t=", t, " d_sum", d_sum)
#print (found_row)
colors.append(mapper.to_rgba(d_sum))
rates.append(rate)
ds.append(d_sum)
if d_sum >= threshold:
instable.append(rate)
if (rate < self.min_rate).all():
self.min_rate = rate.copy()
else:
stable.append(rate)
r = np.linalg.norm(rate)
if r > max_r:
max_r = r
#print ("t=", t, " rpy=", rate)
#return np.array(instable), np.array(stable), max_r, colors
print ("Instability occurs at ", self.min_rate)
np.savetxt("/tmp/unstable.txt", instable )
return np.array(rates), max_r, colors, ds
示例6: plot
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import plasma [as 別名]
def plot(self):
#instable, stable, r, colors = self.process_results()
rates, r, colors, ds = self.process_results()
#print ("Instable", instable)
#print ("Stable", stable)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
#stable = ax.scatter(data[:,0], data[:,1], data[:,2], c=colors, label=labels)
"""
if len(stable)>0:
ax_stable = ax.scatter(stable[:,0], stable[:,1], stable[:,2], c='b')
if len(instable)>0:
ax_instable = ax.scatter(instable[:,0], instable[:,1], instable[:,2], c='r')
"""
ax_instable = ax.scatter(rates[:,0], rates[:,1], rates[:,2], c=ds, cmap='plasma')
steps = 20
theta, phi = np.linspace(0, 2 * np.pi, steps), np.linspace(0, np.pi, steps)
THETA, PHI = np.meshgrid(theta, phi)
x = r * np.sin(PHI) * np.cos(THETA)
y = r * np.sin(PHI) * np.sin(THETA)
z = r * np.cos(PHI)
#ax.plot_wireframe(x, y, z, color="b")
ax.set_xlabel('Roll (deg/s)')
ax.set_ylabel('Pitch (deg/s)')
ax.set_zlabel('Yaw (deg/s)')
"""
if len(instable)>0:
print ("HERE")
ax.legend((ax_stable, ax_instable), ("Stable Region", "Instable"))
else:
print ("HERE2")
ax.legend((ax_stable,), ("Stable Region",))
"""
title_mapping = {
"dart" : "DART",
"ode" : "ODE",
"bullet" : "Bullet",
"simbody" : "Simbody"
}
#plt.title("{} Physics Engine - Step size {}".format(title_mapping[self.physics_type], self.step_size))
#_data = plt.cm.jet()
cb = plt.colorbar(ax_instable, ax=ax)
cb.set_label(label='Model Drift (meters)', weight='bold')
plt.show()