本文整理匯總了Python中matplotlib.cm方法的典型用法代碼示例。如果您正苦於以下問題:Python matplotlib.cm方法的具體用法?Python matplotlib.cm怎麽用?Python matplotlib.cm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib
的用法示例。
在下文中一共展示了matplotlib.cm方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: apply_cmap
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import cm [as 別名]
def apply_cmap(zs, cmap, vmin=None, vmax=None, unit=None, logrescale=False):
'''
apply_cmap(z, cmap) applies the given cmap to the values in z; if vmin and/or vmax are passed,
they are used to scale z.
Note that this function can automatically rescale data into log-space if the colormap is a
neuropythy log-space colormap such as log_eccentricity. To enable this behaviour use the
optional argument logrescale=True.
'''
zs = pimms.mag(zs) if unit is None else pimms.mag(zs, unit)
zs = np.asarray(zs, dtype='float')
if pimms.is_str(cmap): cmap = matplotlib.cm.get_cmap(cmap)
if logrescale:
if vmin is None: vmin = np.log(np.nanmin(zs))
if vmax is None: vmax = np.log(np.nanmax(zs))
mn = np.exp(vmin)
u = zdivide(nanlog(zs + mn) - vmin, vmax - vmin, null=np.nan)
else:
if vmin is None: vmin = np.nanmin(zs)
if vmax is None: vmax = np.nanmax(zs)
u = zdivide(zs - vmin, vmax - vmin, null=np.nan)
u[np.isnan(u)] = -np.inf
return cmap(u)
示例2: plotTZ
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import cm [as 別名]
def plotTZ(filename=None):
t = np.linspace(0, 1, 101)
z = 0.25 + 0.5 / (1 + np.exp(- 20 * (t - 0.5))) + 0.05 * np.cos(t * 2 * np.pi)
cmap = cm.get_cmap('cool')
fig, (ax1, ax2) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[19, 1]})
poly1 = [[0, 0]]
poly1.extend([[t[i], z[i]] for i in range(t.size)])
poly1.extend([[1, 0], [0, 0]])
poly2 = [[0, 1]]
poly2.extend([[t[i], z[i]] for i in range(t.size)])
poly2.extend([[1, 1], [0, 1]])
poly1 = plt.Polygon(poly1,fc=cmap(0.0))
poly2 = plt.Polygon(poly2,fc=cmap(1.0))
ax1.add_patch(poly1)
ax1.add_patch(poly2)
ax1.set_xlabel('x1', size=22)
ax1.set_ylabel('x2', size=22)
ax1.set_title('True Data', size=28)
colorbar.ColorbarBase(ax2, cmap=cmap, format='%.1f')
ax2.set_ylabel('Output y', size=22)
plt.show()
if not filename is None:
plt.savefig(filename, format="pdf", bbox_inches="tight")
plt.close()
示例3: plotTZ
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import cm [as 別名]
def plotTZ(filename=None):
cmap = cm.get_cmap('cool')
fig, (ax1, ax2) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[19, 1]})
ax1.add_patch(pl.Rectangle(xy=[0, 0], width=0.5, height=0.5, facecolor=cmap(0.0), linewidth='2.0'))
ax1.add_patch(pl.Rectangle(xy=[0.5, 0.5], width=0.5, height=0.5, facecolor=cmap(0.0), linewidth='2.0'))
ax1.add_patch(pl.Rectangle(xy=[0, 0.5], width=0.5, height=0.5, facecolor=cmap(1.0), linewidth='2.0'))
ax1.add_patch(pl.Rectangle(xy=[0.5, 0], width=0.5, height=0.5, facecolor=cmap(1.0), linewidth='2.0'))
ax1.set_xlabel('x1', size=22)
ax1.set_ylabel('x2', size=22)
ax1.set_title('True Data', size=28)
colorbar.ColorbarBase(ax2, cmap=cmap, format='%.1f')
ax2.set_ylabel('Output y', size=22)
plt.show()
if not filename is None:
plt.savefig(filename, format="pdf", bbox_inches="tight")
plt.close()
示例4: set_cmap
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import cm [as 別名]
def set_cmap(cmap):
"""
Set the default colormap. Applies to the current image if any.
See help(colormaps) for more information.
*cmap* must be a :class:`~matplotlib.colors.Colormap` instance, or
the name of a registered colormap.
See :func:`matplotlib.cm.register_cmap` and
:func:`matplotlib.cm.get_cmap`.
"""
cmap = cm.get_cmap(cmap)
rc('image', cmap=cmap.name)
im = gci()
if im is not None:
im.set_cmap(cmap)
draw_if_interactive()
示例5: spy
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import cm [as 別名]
def spy(Z, precision=0, marker=None, markersize=None, aspect='equal', hold=None, **kwargs):
ax = gca()
# allow callers to override the hold state by passing hold=True|False
washold = ax.ishold()
if hold is not None:
ax.hold(hold)
try:
ret = ax.spy(Z, precision, marker, markersize, aspect, **kwargs)
draw_if_interactive()
finally:
ax.hold(washold)
if isinstance(ret, cm.ScalarMappable):
sci(ret)
return ret
################# REMAINING CONTENT GENERATED BY boilerplate.py ##############
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
示例6: gci
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import cm [as 別名]
def gci():
"""
Get the current colorable artist. Specifically, returns the
current :class:`~matplotlib.cm.ScalarMappable` instance (image or
patch collection), or *None* if no images or patch collections
have been defined. The commands :func:`~matplotlib.pyplot.imshow`
and :func:`~matplotlib.pyplot.figimage` create
:class:`~matplotlib.image.Image` instances, and the commands
:func:`~matplotlib.pyplot.pcolor` and
:func:`~matplotlib.pyplot.scatter` create
:class:`~matplotlib.collections.Collection` instances. The
current image is an attribute of the current axes, or the nearest
earlier axes in the current figure that contains an image.
"""
return gcf()._gci()
## Any Artist ##
# (getp is simply imported)
示例7: set_cmap
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import cm [as 別名]
def set_cmap(cmap):
"""
Set the default colormap. Applies to the current image if any.
See help(colormaps) for more information.
*cmap* must be a :class:`~matplotlib.colors.Colormap` instance, or
the name of a registered colormap.
See :func:`matplotlib.cm.register_cmap` and
:func:`matplotlib.cm.get_cmap`.
"""
cmap = cm.get_cmap(cmap)
rc('image', cmap=cmap.name)
im = gci()
if im is not None:
im.set_cmap(cmap)
示例8: init_plot_data
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import cm [as 別名]
def init_plot_data(self):
a = self.fig.add_subplot(111)
x = np.arange(120.0) * 2 * np.pi / 60.0
y = np.arange(100.0) * 2 * np.pi / 50.0
self.x, self.y = np.meshgrid(x, y)
z = np.sin(self.x) + np.cos(self.y)
self.im = a.imshow(z, cmap=cm.RdBu) # , interpolation='nearest')
zmax = np.max(z) - ERR_TOL
ymax_i, xmax_i = np.nonzero(z >= zmax)
if self.im.origin == 'upper':
ymax_i = z.shape[0] - ymax_i
self.lines = a.plot(xmax_i, ymax_i, 'ko')
self.toolbar.update() # Not sure why this is needed - ADS
示例9: test_light_source_topo_surface
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import cm [as 別名]
def test_light_source_topo_surface():
"""Shades a DEM using different v.e.'s and blend modes."""
fname = cbook.get_sample_data('jacksboro_fault_dem.npz', asfileobj=False)
dem = np.load(fname)
elev = dem['elevation']
# Get the true cellsize in meters for accurate vertical exaggeration
# Convert from decimal degrees to meters
dx, dy = dem['dx'], dem['dy']
dx = 111320.0 * dx * np.cos(dem['ymin'])
dy = 111320.0 * dy
dem.close()
ls = mcolors.LightSource(315, 45)
cmap = cm.gist_earth
fig, axes = plt.subplots(nrows=3, ncols=3)
for row, mode in zip(axes, ['hsv', 'overlay', 'soft']):
for ax, ve in zip(row, [0.1, 1, 10]):
rgb = ls.shade(elev, cmap, vert_exag=ve, dx=dx, dy=dy,
blend_mode=mode)
ax.imshow(rgb)
ax.set(xticks=[], yticks=[])
示例10: plot_graph
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import cm [as 別名]
def plot_graph(self, am, position=None, cls=None, fig_name='graph.png'):
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
g = nx.from_numpy_matrix(am)
if position is None:
position=nx.drawing.circular_layout(g)
fig = plt.figure()
if cls is None:
cls='r'
else:
# Make a user-defined colormap.
cm1 = mcol.LinearSegmentedColormap.from_list("MyCmapName", ["r", "b"])
# Make a normalizer that will map the time values from
# [start_time,end_time+1] -> [0,1].
cnorm = mcol.Normalize(vmin=0, vmax=1)
# Turn these into an object that can be used to map time values to colors and
# can be passed to plt.colorbar().
cpick = cm.ScalarMappable(norm=cnorm, cmap=cm1)
cpick.set_array([])
cls = cpick.to_rgba(cls)
plt.colorbar(cpick, ax=fig.add_subplot(111))
nx.draw(g, pos=position, node_color=cls, ax=fig.add_subplot(111))
fig.savefig(os.path.join(self.plotdir, fig_name))
示例11: scale_for_cmap
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import cm [as 別名]
def scale_for_cmap(cmap, x, vmin=Ellipsis, vmax=Ellipsis, unit=Ellipsis):
'''
scale_for_cmap(cmap, x) yields the values in x rescaled to be appropriate for the given
colormap cmap. The cmap must be the name of a colormap or a colormap object.
For a given cmap argument, if the object is a colormap itself, it is treated as cmap.name.
If the cmap names a colormap known to neuropythy, neuropythy will rescale the values in x
according to a heuristic.
'''
import matplotlib as mpl
if isinstance(cmap, mpl.colors.Colormap): cmap = cmap.name
(name, cm) = (None, None)
if cmap not in colormaps:
for (k,v) in six.iteritems(colormaps):
if cmap in k:
(name, cm) = (k, v)
break
else: (name, cm) = (cmap, colormaps[cmap])
if cm is not None:
cm = cm if len(cm) == 3 else (cm + (None,))
(cm, (mn,mx), uu) = cm
if vmin is Ellipsis: vmin = mn
if vmax is Ellipsis: vmax = mx
if unit is Ellipsis: unit = uu
if vmin is Ellipsis: vmin = None
if vmax is Ellipsis: vmax = None
if unit is Ellipsis: unit = None
x = pimms.mag(x) if unit is None else pimms.mag(x, unit)
if name is not None and name.startswith('log_'):
emn = np.exp(vmin)
x = np.log(x + emn)
vmin = np.nanmin(x) if vmin is None else vmin
vmax = np.nanmax(x) if vmax is None else vmax
return zdivide(x - vmin, vmax - vmin, null=np.nan)
示例12: guess_cortex_cmap
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import cm [as 別名]
def guess_cortex_cmap(pname):
'''
guess_cortex_cmap(proptery_name) yields a tuple (cmap, (vmin, vmax)) of a cortical color map
appropriate to the given property name and the suggested value scaling for the cmap. If the
given property is not a string or is not recognized then the log_eccentricity axis is used
and the suggested vmin and vmax are None.
'''
import matplotlib as mpl
if isinstance(pname, mpl.colors.Colormap): pname = pname.name
if not pimms.is_str(pname): return ('eccenflat', cmap_eccenflat, (None, None), None)
if pname in colormaps: (cm,cmname) = (colormaps[pname],pname)
else:
# check each manually
cm = None
for (k,v) in six.iteritems(colormaps):
if pname.endswith(k):
(cmname,cm) = (k,v)
break
if cm is None:
for (k,v) in six.iteritems(colormaps):
if pname.startswith(k):
(cmname,cm) = (k,v)
break
# we prefer log-eccentricity when possible
if cm is None: return ('eccenflat', cmap_eccenflat, (None, None), None)
if ('log_'+cmname) in colormaps:
cmname = 'log_'+cmname
cm = colormaps[cmname]
return (cmname,) + (cm if len(cm) == 3 else cm + (None,))
示例13: list_colormaps
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import cm [as 別名]
def list_colormaps():
print("{}".format(", ".join([c.strip() for c in cm.cmap_d.keys()])))
sys.exit(0)
示例14: __init__
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import cm [as 別名]
def __init__(self, alpha=0.5, cmap=None):
self.alpha = alpha
self.cm = matplotlib.cm.get_cmap(cmap)
示例15: __call__
# 需要導入模塊: import matplotlib [as 別名]
# 或者: from matplotlib import cm [as 別名]
def __call__(self, image, feature, debug=False):
_feature = (feature * self.cm.N).astype(np.int)
heatmap = self.cm(_feature)[:, :, :3] * 255
heatmap = cv2.resize(heatmap, image.shape[1::-1], interpolation=cv2.INTER_NEAREST)
canvas = (image * (1 - self.alpha) + heatmap * self.alpha).astype(np.uint8)
if debug:
cv2.imshow('max=%f, sum=%f' % (np.max(feature), np.sum(feature)), canvas)
cv2.waitKey(0)
return canvas