本文整理匯總了Python中matplotlib.cm.gray方法的典型用法代碼示例。如果您正苦於以下問題:Python cm.gray方法的具體用法?Python cm.gray怎麽用?Python cm.gray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.cm
的用法示例。
在下文中一共展示了cm.gray方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: vis_square
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def vis_square(data, padsize=1, padval=0):
data -= data.min()
data /= data.max()
# force the number of filters to be square
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
# tile the filters into an image
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
plt.imshow(data,cmap=cm.gray)
#Perform a forward pass with the data as the input image
示例2: test_pngsuite
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def test_pngsuite():
dirname = os.path.join(
os.path.dirname(__file__),
'baseline_images',
'pngsuite')
files = glob.glob(os.path.join(dirname, 'basn*.png'))
files.sort()
fig = plt.figure(figsize=(len(files), 2))
for i, fname in enumerate(files):
data = plt.imread(fname)
cmap = None # use default colormap
if data.ndim == 2:
# keep grayscale images gray
cmap = cm.gray
plt.imshow(data, extent=[i, i + 1, 0, 1], cmap=cmap)
plt.gca().patch.set_facecolor("#ddffff")
plt.gca().set_xlim(0, len(files))
示例3: test_pngsuite
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def test_pngsuite():
dirname = os.path.join(
os.path.dirname(__file__),
'baseline_images',
'pngsuite')
files = sorted(glob.iglob(os.path.join(dirname, 'basn*.png')))
fig = plt.figure(figsize=(len(files), 2))
for i, fname in enumerate(files):
data = plt.imread(fname)
cmap = None # use default colormap
if data.ndim == 2:
# keep grayscale images gray
cmap = cm.gray
plt.imshow(data, extent=[i, i + 1, 0, 1], cmap=cmap)
plt.gca().patch.set_facecolor("#ddffff")
plt.gca().set_xlim(0, len(files))
示例4: plot_design
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def plot_design(self, factor_labels=None, fontsize=10):
def scaleColumns(X):
mn,mx = np.min(X,axis=0) , np.max(X,axis=0)
Xs = (X-mn)/(mx-mn+eps)
Xs[np.isnan(Xs)] = 1 #if the whole column is a constant
return Xs
X = self.spm.X
vmin,vmax = None, None
if np.all(X==1):
vmin,vmax = 0, 1
self.ax.imshow(scaleColumns(X), cmap=colormaps.gray, interpolation='nearest', vmin=vmin, vmax=vmax)
if factor_labels != None:
gs = X.shape
tx = [self.ax.text(i, -0.05*gs[0], label) for i,label in enumerate(factor_labels)]
pyplot.setp(tx, ha='center', va='bottom', color='k', fontsize=fontsize)
self.ax.axis('normal')
self.ax.axis('off')
示例5: plot_image
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def plot_image(data, vmin=None, vmax=None, colorbar=True, cmap="gray"):
"""
Plot image data, such as RTM images or FWI gradients.
Parameters
----------
data : ndarray
Image data to plot.
cmap : str
Choice of colormap. Defaults to gray scale for images as a
seismic convention.
"""
plot = plt.imshow(np.transpose(data),
vmin=vmin or 0.9 * np.min(data),
vmax=vmax or 1.1 * np.max(data),
cmap=cmap)
# Create aligned colorbar on the right
if colorbar:
ax = plt.gca()
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(plot, cax=cax)
plt.show()
示例6: calibrate_division_model_test
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def calibrate_division_model_test():
img = rgb2gray(plt.imread('test/kamera2.png'))
y0 = np.array(img.shape)[::-1][np.newaxis].T / 2.
z_n = np.linalg.norm(np.array(img.shape) / 2.)
points = pilab_annotate_load('test/kamera2_lines.xml')
points_per_line = 5
num_lines = points.shape[0] / points_per_line
lines_coords = np.array([points[i * points_per_line:i * points_per_line + points_per_line] for i in xrange(num_lines)])
c = camera.calibrate_division_model(lines_coords, y0, z_n)
import matplotlib.cm as cm
plt.figure()
plt.imshow(img, cmap=cm.gray)
for line in xrange(num_lines):
x = lines_coords[line, :, 0]
plt.plot(x, lines_coords[line, :, 1], 'g')
mc = camera.fit_line(lines_coords[line].T)
plt.plot(x, mc[0] * x + mc[1], 'y')
xy = c.undistort(lines_coords[line].T)
plt.plot(xy[0, :], xy[1, :], 'r')
plt.show()
plt.close()
示例7: cumulative_rainfall_catchment
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def cumulative_rainfall_catchment(hillshade_file, radar_data_totals):
"""
Plots the catchment hillshade and overlays the total rainfalls accumulated
during the model run.
"""
label_size = 20
#title_size = 30
axis_size = 28
import matplotlib.pyplot as pp
import numpy as np
import matplotlib.colors as colors
import matplotlib.cm as cmx
from matplotlib import rcParams
import matplotlib.lines as mpllines
#get data
#hillshade, hillshade_header = read_flt(hillshade_file)
hillshade, hillshade_header = read_ascii_raster(hillshade_file)
rainfall_totals = np.loadtxt(radar_data_totals)
#ignore nodata values
hillshade = np.ma.masked_where(hillshade == -9999, hillshade)
#fonts
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = ['Liberation Sans']
rcParams['font.size'] = label_size
fig = pp.figure(1, facecolor='white',figsize=(10,7.5))
ax = fig.add_subplot(1,1,1)
plt.imshow(hillshade, vmin=0, vmax=255, cmap=cmx.gray)
plt.imshow(rainfall_totals, interpolation="none", alpha=0.2)
示例8: simple_density_plot_asc
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def simple_density_plot_asc(rfname):
import numpy as np, matplotlib.pyplot as plt
from matplotlib import rcParams
import matplotlib.colors as colors
import matplotlib.cm as cmx
label_size = 20
#title_size = 30
axis_size = 28
# Set up fonts for plots
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = ['Liberation Sans']
rcParams['font.size'] = label_size
# get the data
raster,header = read_ascii_raster(rfname)
# now get the extent
extent_raster = get_raster_extent_asc(header)
#print extent_raster
# make a figure, sized for a ppt slide
fig = plt.figure(1, facecolor='white',figsize=(10,7.5))
ax1 = fig.add_subplot(1,1,1)
im = ax1.imshow(raster, cmap='gray', extent = extent_raster)
ax1.set_xlabel("Easting (m)")
ax1.set_ylabel("Northing (m)")
im.set_clim(0, np.max(raster))
cbar = fig.colorbar(im, orientation='horizontal')
cbar.set_label("Elevation in meters")
plt.show()
示例9: gray
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def gray():
'''
set the default colormap to gray and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='gray')
im = gci()
if im is not None:
im.set_cmap(cm.gray)
draw_if_interactive()
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
示例10: show_rectified_images
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def show_rectified_images(rimg1, rimg2):
ax = pl.subplot(121)
pl.imshow(rimg1, cmap=cm.gray)
# Hack to get the lines span on the left image
# http://stackoverflow.com/questions/6146290/plotting-a-line-over-several-graphs
for i in range(1, rimg1.shape[0], int(rimg1.shape[0]/20)):
pl.axhline(y=i, color='g', xmin=0, xmax=1.2, clip_on=False);
pl.subplot(122)
pl.imshow(rimg2, cmap=cm.gray)
for i in range(1, rimg1.shape[0], int(rimg1.shape[0]/20)):
pl.axhline(y=i, color='g');
示例11: plot_shotrecord
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def plot_shotrecord(rec, model, t0, tn, colorbar=True):
"""
Plot a shot record (receiver values over time).
Parameters
----------
rec :
Receiver data with shape (time, points).
model : Model
object that holds the velocity model.
t0 : int
Start of time dimension to plot.
tn : int
End of time dimension to plot.
"""
scale = np.max(rec) / 10.
extent = [model.origin[0], model.origin[0] + 1e-3*model.domain_size[0],
1e-3*tn, t0]
plot = plt.imshow(rec, vmin=-scale, vmax=scale, cmap=cm.gray, extent=extent)
plt.xlabel('X position (km)')
plt.ylabel('Time (s)')
# Create aligned colorbar on the right
if colorbar:
ax = plt.gca()
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(plot, cax=cax)
plt.show()
示例12: plot_ChiMValues_hillshade
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def plot_ChiMValues_hillshade(hillshade_file, m_value_file):
"""
Pass in a hillshade and chiMvalues flt file and plot the results over
a greyscale hillshade
"""
import matplotlib.pyplot as pp
import matplotlib.cm as cm
from matplotlib import rcParams
import numpy as np
#get data
hillshade, hillshade_header = read_flt(hillshade_file)
m_values, m_values_header = read_flt(m_value_file)
#ignore nodata values
hillshade = np.ma.masked_where(hillshade == -9999, hillshade)
m_values = np.ma.masked_where(m_values == -9999, m_values)
#fonts
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = ['Liberation Sans']
rcParams['font.size'] = 12
fig, ax = pp.subplots()
#plot the arrays
ax.imshow(hillshade, vmin=0, vmax=255, cmap=cm.gray)
data = ax.imshow(m_values, interpolation='none', vmin=m_values.min(), vmax=m_values.max(), cmap=cm.jet)
xlocs, xlabels = pp.xticks()
ylocs, ylabels = pp.yticks()
new_x_labels = np.linspace(hillshade_header[2],hillshade_header[2]+(hillshade_header[1]*hillshade_header[4]), len(xlocs))
new_y_labels = np.linspace(hillshade_header[3],hillshade_header[3]+(hillshade_header[0]*hillshade_header[4]), len(ylocs))
new_x_labels = [str(x).split('.')[0] for x in new_x_labels] #get rid of decimal places in axis ticks
new_y_labels = [str(y).split('.')[0] for y in new_y_labels][::-1] #invert y axis
pp.xticks(xlocs[1:-1], new_x_labels[1:-1], rotation=30) #[1:-1] skips ticks where we have no data
pp.yticks(ylocs[1:-1], new_y_labels[1:-1])
fig.colorbar(data).set_label('M Values')
pp.xlabel('Easting (m)')
pp.ylabel('Northing (m)')
pp.show()
示例13: colors
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def colors():
"""
This is a do-nothing function to provide you with help on how
matplotlib handles colors.
Commands which take color arguments can use several formats to
specify the colors. For the basic built-in colors, you can use a
single letter
===== =======
Alias Color
===== =======
'b' blue
'g' green
'r' red
'c' cyan
'm' magenta
'y' yellow
'k' black
'w' white
===== =======
For a greater range of colors, you have two options. You can
specify the color using an html hex string, as in::
color = '#eeefff'
or you can pass an R,G,B tuple, where each of R,G,B are in the
range [0,1].
You can also use any legal html name for a color, for example::
color = 'red'
color = 'burlywood'
color = 'chartreuse'
The example below creates a subplot with a dark
slate gray background::
subplot(111, axisbg=(0.1843, 0.3098, 0.3098))
Here is an example that creates a pale turquoise title::
title('Is this the best color?', color='#afeeee')
"""
pass
示例14: filtered_text
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def filtered_text(ax):
# mostly copied from contour_demo.py
# prepare image
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
# draw
im = ax.imshow(Z, interpolation='bilinear', origin='lower',
cmap=cm.gray, extent=(-3, 3, -2, 2))
levels = np.arange(-1.2, 1.6, 0.2)
CS = ax.contour(Z, levels,
origin='lower',
linewidths=2,
extent=(-3, 3, -2, 2))
ax.set_aspect("auto")
# contour label
cl = ax.clabel(CS, levels[1::2], # label every second level
inline=1,
fmt='%1.1f',
fontsize=11)
# change clable color to black
from matplotlib.patheffects import Normal
for t in cl:
t.set_color("k")
# to force TextPath (i.e., same font in all backends)
t.set_path_effects([Normal()])
# Add white glows to improve visibility of labels.
white_glows = FilteredArtistList(cl, GrowFilter(3))
ax.add_artist(white_glows)
white_glows.set_zorder(cl[0].get_zorder() - 0.1)
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
示例15: plot_sphere_func2
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def plot_sphere_func2(f, grid='Clenshaw-Curtis', beta=None, alpha=None, colormap='jet', fignum=0, normalize=True):
# TODO: update this function now that we have changed the order of axes in f
import matplotlib.pyplot as plt
from matplotlib import cm, colors
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from scipy.special import sph_harm
if normalize:
f = (f - np.min(f)) / (np.max(f) - np.min(f))
if grid == 'Driscoll-Healy':
b = f.shape[0] // 2
elif grid == 'Clenshaw-Curtis':
b = (f.shape[0] - 2) // 2
elif grid == 'SOFT':
b = f.shape[0] // 2
elif grid == 'Gauss-Legendre':
b = (f.shape[0] - 2) // 2
if beta is None or alpha is None:
beta, alpha = meshgrid(b=b, grid_type=grid)
alpha = np.r_[alpha, alpha[0, :][None, :]]
beta = np.r_[beta, beta[0, :][None, :]]
f = np.r_[f, f[0, :][None, :]]
x = np.sin(beta) * np.cos(alpha)
y = np.sin(beta) * np.sin(alpha)
z = np.cos(beta)
# m, l = 2, 3
# Calculate the spherical harmonic Y(l,m) and normalize to [0,1]
# fcolors = sph_harm(m, l, beta, alpha).real
# fmax, fmin = fcolors.max(), fcolors.min()
# fcolors = (fcolors - fmin) / (fmax - fmin)
print(x.shape, f.shape)
if f.ndim == 2:
f = cm.gray(f)
print('2')
# Set the aspect ratio to 1 so our sphere looks spherical
fig = plt.figure(figsize=plt.figaspect(1.))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(x, y, z, rstride=1, cstride=1, facecolors=f ) # cm.gray(f))
# Turn off the axis planes
ax.set_axis_off()
plt.show()