當前位置: 首頁>>代碼示例>>Python>>正文


Python cm.gray方法代碼示例

本文整理匯總了Python中matplotlib.cm.gray方法的典型用法代碼示例。如果您正苦於以下問題:Python cm.gray方法的具體用法?Python cm.gray怎麽用?Python cm.gray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.cm的用法示例。


在下文中一共展示了cm.gray方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: vis_square

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def vis_square(data, padsize=1, padval=0):
    data -= data.min()
    data /= data.max()
    
    # force the number of filters to be square
    n = int(np.ceil(np.sqrt(data.shape[0])))
    padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
    data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
    
    # tile the filters into an image
    data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
    data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
    
    plt.imshow(data,cmap=cm.gray)



#Perform a forward pass with the data as the input image 
開發者ID:artvandelay,項目名稱:Deep_Inside_Convolutional_Networks,代碼行數:20,代碼來源:backprop_analysis.py

示例2: test_pngsuite

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def test_pngsuite():
    dirname = os.path.join(
        os.path.dirname(__file__),
        'baseline_images',
        'pngsuite')
    files = glob.glob(os.path.join(dirname, 'basn*.png'))
    files.sort()

    fig = plt.figure(figsize=(len(files), 2))

    for i, fname in enumerate(files):
        data = plt.imread(fname)
        cmap = None  # use default colormap
        if data.ndim == 2:
            # keep grayscale images gray
            cmap = cm.gray
        plt.imshow(data, extent=[i, i + 1, 0, 1], cmap=cmap)

    plt.gca().patch.set_facecolor("#ddffff")
    plt.gca().set_xlim(0, len(files)) 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:22,代碼來源:test_png.py

示例3: test_pngsuite

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def test_pngsuite():
    dirname = os.path.join(
        os.path.dirname(__file__),
        'baseline_images',
        'pngsuite')
    files = sorted(glob.iglob(os.path.join(dirname, 'basn*.png')))

    fig = plt.figure(figsize=(len(files), 2))

    for i, fname in enumerate(files):
        data = plt.imread(fname)
        cmap = None  # use default colormap
        if data.ndim == 2:
            # keep grayscale images gray
            cmap = cm.gray
        plt.imshow(data, extent=[i, i + 1, 0, 1], cmap=cmap)

    plt.gca().patch.set_facecolor("#ddffff")
    plt.gca().set_xlim(0, len(files)) 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:21,代碼來源:test_png.py

示例4: plot_design

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def plot_design(self, factor_labels=None, fontsize=10):
		def scaleColumns(X):
			mn,mx     = np.min(X,axis=0) , np.max(X,axis=0)
			Xs        = (X-mn)/(mx-mn+eps)
			Xs[np.isnan(Xs)] = 1   #if the whole column is a constant
			return Xs
		X             = self.spm.X
		vmin,vmax     = None, None
		if np.all(X==1):
			vmin,vmax = 0, 1
		self.ax.imshow(scaleColumns(X), cmap=colormaps.gray, interpolation='nearest', vmin=vmin, vmax=vmax)
		if factor_labels != None:
			gs        = X.shape
			tx        = [self.ax.text(i, -0.05*gs[0], label)   for i,label in enumerate(factor_labels)]
			pyplot.setp(tx, ha='center', va='bottom', color='k', fontsize=fontsize)
		self.ax.axis('normal')
		self.ax.axis('off') 
開發者ID:0todd0000,項目名稱:spm1d,代碼行數:19,代碼來源:_plot.py

示例5: plot_image

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def plot_image(data, vmin=None, vmax=None, colorbar=True, cmap="gray"):
    """
    Plot image data, such as RTM images or FWI gradients.

    Parameters
    ----------
    data : ndarray
        Image data to plot.
    cmap : str
        Choice of colormap. Defaults to gray scale for images as a
        seismic convention.
    """
    plot = plt.imshow(np.transpose(data),
                      vmin=vmin or 0.9 * np.min(data),
                      vmax=vmax or 1.1 * np.max(data),
                      cmap=cmap)

    # Create aligned colorbar on the right
    if colorbar:
        ax = plt.gca()
        divider = make_axes_locatable(ax)
        cax = divider.append_axes("right", size="5%", pad=0.05)
        plt.colorbar(plot, cax=cax)
    plt.show() 
開發者ID:devitocodes,項目名稱:devito,代碼行數:26,代碼來源:plotting.py

示例6: calibrate_division_model_test

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def calibrate_division_model_test():
    img = rgb2gray(plt.imread('test/kamera2.png'))
    y0 = np.array(img.shape)[::-1][np.newaxis].T / 2.
    z_n = np.linalg.norm(np.array(img.shape) / 2.)
    points = pilab_annotate_load('test/kamera2_lines.xml')
    points_per_line = 5
    num_lines = points.shape[0] / points_per_line
    lines_coords = np.array([points[i * points_per_line:i * points_per_line + points_per_line] for i in xrange(num_lines)])
    c = camera.calibrate_division_model(lines_coords, y0, z_n)

    import matplotlib.cm as cm
    plt.figure()
    plt.imshow(img, cmap=cm.gray)
    for line in xrange(num_lines):
        x = lines_coords[line, :, 0]
        plt.plot(x, lines_coords[line, :, 1], 'g')
        mc = camera.fit_line(lines_coords[line].T)
        plt.plot(x, mc[0] * x + mc[1], 'y')
        xy = c.undistort(lines_coords[line].T)
        plt.plot(xy[0, :], xy[1, :], 'r')
    plt.show()
    plt.close() 
開發者ID:smidm,項目名稱:camera.py,代碼行數:24,代碼來源:camera_test.py

示例7: cumulative_rainfall_catchment

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def cumulative_rainfall_catchment(hillshade_file, radar_data_totals):
    """
    Plots the catchment hillshade and overlays the total rainfalls accumulated
    during the model run.
    """
    label_size = 20
    #title_size = 30
    axis_size = 28

    import matplotlib.pyplot as pp
    import numpy as np
    import matplotlib.colors as colors
    import matplotlib.cm as cmx
    from matplotlib import rcParams
    import matplotlib.lines as mpllines
    
    #get data
    #hillshade, hillshade_header = read_flt(hillshade_file)
    
    hillshade, hillshade_header = read_ascii_raster(hillshade_file)
    rainfall_totals = np.loadtxt(radar_data_totals)
    
    #ignore nodata values    
    hillshade = np.ma.masked_where(hillshade == -9999, hillshade)    
    
    #fonts
    rcParams['font.family'] = 'sans-serif'
    rcParams['font.sans-serif'] = ['Liberation Sans']
    rcParams['font.size'] = label_size      
    
    fig = pp.figure(1, facecolor='white',figsize=(10,7.5))
    ax = fig.add_subplot(1,1,1)
    
    plt.imshow(hillshade, vmin=0, vmax=255, cmap=cmx.gray)
    plt.imshow(rainfall_totals, interpolation="none", alpha=0.2) 
開發者ID:LSDtopotools,項目名稱:LSDMappingTools,代碼行數:37,代碼來源:raster_plotter_2d_ascii_chanfile_version.py

示例8: simple_density_plot_asc

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def simple_density_plot_asc(rfname):

  import numpy as np, matplotlib.pyplot as plt
  from matplotlib import rcParams
  import matplotlib.colors as colors
  import matplotlib.cm as cmx

  label_size = 20
  #title_size = 30
  axis_size = 28

  # Set up fonts for plots
  rcParams['font.family'] = 'sans-serif'
  rcParams['font.sans-serif'] = ['Liberation Sans']
  rcParams['font.size'] = label_size 

  # get the data
  raster,header = read_ascii_raster(rfname)

  # now get the extent
  extent_raster = get_raster_extent_asc(header)

  #print extent_raster

  # make a figure, sized for a ppt slide
  fig = plt.figure(1, facecolor='white',figsize=(10,7.5))
  ax1 =  fig.add_subplot(1,1,1)
  im = ax1.imshow(raster, cmap='gray', extent = extent_raster)
  ax1.set_xlabel("Easting (m)")
  ax1.set_ylabel("Northing (m)")
  im.set_clim(0, np.max(raster))
  cbar = fig.colorbar(im, orientation='horizontal')
  cbar.set_label("Elevation in meters")  

  plt.show() 
開發者ID:LSDtopotools,項目名稱:LSDMappingTools,代碼行數:37,代碼來源:LSDMappingTools.py

示例9: gray

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def gray():
    '''
    set the default colormap to gray and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='gray')
    im = gci()

    if im is not None:
        im.set_cmap(cm.gray)
    draw_if_interactive()


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:17,代碼來源:pyplot.py

示例10: show_rectified_images

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def show_rectified_images(rimg1, rimg2):
    ax = pl.subplot(121)
    pl.imshow(rimg1, cmap=cm.gray)

    # Hack to get the lines span on the left image
    # http://stackoverflow.com/questions/6146290/plotting-a-line-over-several-graphs
    for i in range(1, rimg1.shape[0], int(rimg1.shape[0]/20)):
        pl.axhline(y=i, color='g', xmin=0, xmax=1.2, clip_on=False);

    pl.subplot(122)
    pl.imshow(rimg2, cmap=cm.gray)
    for i in range(1, rimg1.shape[0], int(rimg1.shape[0]/20)):
        pl.axhline(y=i, color='g'); 
開發者ID:pubgeo,項目名稱:dfc2019,代碼行數:15,代碼來源:epipolar.py

示例11: plot_shotrecord

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def plot_shotrecord(rec, model, t0, tn, colorbar=True):
    """
    Plot a shot record (receiver values over time).

    Parameters
    ----------
    rec :
        Receiver data with shape (time, points).
    model : Model
        object that holds the velocity model.
    t0 : int
        Start of time dimension to plot.
    tn : int
        End of time dimension to plot.
    """
    scale = np.max(rec) / 10.
    extent = [model.origin[0], model.origin[0] + 1e-3*model.domain_size[0],
              1e-3*tn, t0]

    plot = plt.imshow(rec, vmin=-scale, vmax=scale, cmap=cm.gray, extent=extent)
    plt.xlabel('X position (km)')
    plt.ylabel('Time (s)')

    # Create aligned colorbar on the right
    if colorbar:
        ax = plt.gca()
        divider = make_axes_locatable(ax)
        cax = divider.append_axes("right", size="5%", pad=0.05)
        plt.colorbar(plot, cax=cax)
    plt.show() 
開發者ID:devitocodes,項目名稱:devito,代碼行數:32,代碼來源:plotting.py

示例12: plot_ChiMValues_hillshade

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def plot_ChiMValues_hillshade(hillshade_file, m_value_file):
    
    """
    Pass in a hillshade and chiMvalues flt file and plot the results over
    a greyscale hillshade
    """

    import matplotlib.pyplot as pp
    import matplotlib.cm as cm
    from matplotlib import rcParams
    import numpy as np
    
    #get data
    hillshade, hillshade_header = read_flt(hillshade_file)
    m_values, m_values_header = read_flt(m_value_file)
    
    #ignore nodata values    
    hillshade = np.ma.masked_where(hillshade == -9999, hillshade)    
    m_values = np.ma.masked_where(m_values == -9999, m_values)
    
    #fonts
    rcParams['font.family'] = 'sans-serif'
    rcParams['font.sans-serif'] = ['Liberation Sans']
    rcParams['font.size'] = 12  

    fig, ax = pp.subplots()
    
    #plot the arrays
    ax.imshow(hillshade, vmin=0, vmax=255, cmap=cm.gray)
    data = ax.imshow(m_values, interpolation='none', vmin=m_values.min(), vmax=m_values.max(), cmap=cm.jet)
    
    xlocs, xlabels = pp.xticks()
    ylocs, ylabels = pp.yticks()
   
    new_x_labels = np.linspace(hillshade_header[2],hillshade_header[2]+(hillshade_header[1]*hillshade_header[4]), len(xlocs))
    new_y_labels = np.linspace(hillshade_header[3],hillshade_header[3]+(hillshade_header[0]*hillshade_header[4]), len(ylocs))        
    
    new_x_labels = [str(x).split('.')[0] for x in new_x_labels] #get rid of decimal places in axis ticks
    new_y_labels = [str(y).split('.')[0] for y in new_y_labels][::-1] #invert y axis
    pp.xticks(xlocs[1:-1], new_x_labels[1:-1], rotation=30)  #[1:-1] skips ticks where we have no data
    pp.yticks(ylocs[1:-1], new_y_labels[1:-1])    
    
    fig.colorbar(data).set_label('M Values')
    pp.xlabel('Easting (m)')
    pp.ylabel('Northing (m)')
    
    pp.show() 
開發者ID:LSDtopotools,項目名稱:LSDMappingTools,代碼行數:49,代碼來源:raster_plotter_2d_ascii_chanfile_version.py

示例13: colors

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def colors():
    """
    This is a do-nothing function to provide you with help on how
    matplotlib handles colors.

    Commands which take color arguments can use several formats to
    specify the colors.  For the basic built-in colors, you can use a
    single letter

      =====   =======
      Alias   Color
      =====   =======
      'b'     blue
      'g'     green
      'r'     red
      'c'     cyan
      'm'     magenta
      'y'     yellow
      'k'     black
      'w'     white
      =====   =======

    For a greater range of colors, you have two options.  You can
    specify the color using an html hex string, as in::

      color = '#eeefff'

    or you can pass an R,G,B tuple, where each of R,G,B are in the
    range [0,1].

    You can also use any legal html name for a color, for example::

      color = 'red'
      color = 'burlywood'
      color = 'chartreuse'

    The example below creates a subplot with a dark
    slate gray background::

       subplot(111, axisbg=(0.1843, 0.3098, 0.3098))

    Here is an example that creates a pale turquoise title::

      title('Is this the best color?', color='#afeeee')

    """
    pass 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:49,代碼來源:pyplot.py

示例14: filtered_text

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def filtered_text(ax):
    # mostly copied from contour_demo.py

    # prepare image
    delta = 0.025
    x = np.arange(-3.0, 3.0, delta)
    y = np.arange(-2.0, 2.0, delta)
    X, Y = np.meshgrid(x, y)
    Z1 = np.exp(-X**2 - Y**2)
    Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
    Z = (Z1 - Z2) * 2

    # draw
    im = ax.imshow(Z, interpolation='bilinear', origin='lower',
                   cmap=cm.gray, extent=(-3, 3, -2, 2))
    levels = np.arange(-1.2, 1.6, 0.2)
    CS = ax.contour(Z, levels,
                    origin='lower',
                    linewidths=2,
                    extent=(-3, 3, -2, 2))

    ax.set_aspect("auto")

    # contour label
    cl = ax.clabel(CS, levels[1::2],  # label every second level
                   inline=1,
                   fmt='%1.1f',
                   fontsize=11)

    # change clable color to black
    from matplotlib.patheffects import Normal
    for t in cl:
        t.set_color("k")
        # to force TextPath (i.e., same font in all backends)
        t.set_path_effects([Normal()])

    # Add white glows to improve visibility of labels.
    white_glows = FilteredArtistList(cl, GrowFilter(3))
    ax.add_artist(white_glows)
    white_glows.set_zorder(cl[0].get_zorder() - 0.1)

    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False) 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:45,代碼來源:demo_agg_filter.py

示例15: plot_sphere_func2

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import gray [as 別名]
def plot_sphere_func2(f, grid='Clenshaw-Curtis', beta=None, alpha=None, colormap='jet', fignum=0,  normalize=True):
    # TODO: update this  function now that we have changed the order of axes in f
    import matplotlib.pyplot as plt
    from matplotlib import cm, colors
    from mpl_toolkits.mplot3d import Axes3D
    import numpy as np
    from scipy.special import sph_harm

    if normalize:
        f = (f - np.min(f)) / (np.max(f) - np.min(f))

    if grid == 'Driscoll-Healy':
        b = f.shape[0] // 2
    elif grid == 'Clenshaw-Curtis':
        b = (f.shape[0] - 2) // 2
    elif grid == 'SOFT':
        b = f.shape[0] // 2
    elif grid == 'Gauss-Legendre':
        b = (f.shape[0] - 2) // 2

    if beta is None or alpha is None:
        beta, alpha = meshgrid(b=b, grid_type=grid)

    alpha = np.r_[alpha, alpha[0, :][None, :]]
    beta = np.r_[beta, beta[0, :][None, :]]
    f = np.r_[f, f[0, :][None, :]]

    x = np.sin(beta) * np.cos(alpha)
    y = np.sin(beta) * np.sin(alpha)
    z = np.cos(beta)

    # m, l = 2, 3
    # Calculate the spherical harmonic Y(l,m) and normalize to [0,1]
    # fcolors = sph_harm(m, l, beta, alpha).real
    # fmax, fmin = fcolors.max(), fcolors.min()
    # fcolors = (fcolors - fmin) / (fmax - fmin)
    print(x.shape, f.shape)

    if f.ndim == 2:
        f = cm.gray(f)
        print('2')

    # Set the aspect ratio to 1 so our sphere looks spherical
    fig = plt.figure(figsize=plt.figaspect(1.))
    ax = fig.add_subplot(111, projection='3d')
    ax.plot_surface(x, y, z, rstride=1, cstride=1, facecolors=f ) # cm.gray(f))
    # Turn off the axis planes
    ax.set_axis_off()
    plt.show() 
開發者ID:AMLab-Amsterdam,項目名稱:lie_learn,代碼行數:51,代碼來源:S2.py


注:本文中的matplotlib.cm.gray方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。