本文整理匯總了Python中matplotlib.cm.get_cmap方法的典型用法代碼示例。如果您正苦於以下問題:Python cm.get_cmap方法的具體用法?Python cm.get_cmap怎麽用?Python cm.get_cmap使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.cm
的用法示例。
在下文中一共展示了cm.get_cmap方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: apply_colormap_on_image
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import get_cmap [as 別名]
def apply_colormap_on_image(org_im, activation, colormap_name):
"""
Apply heatmap on image
Args:
org_img (PIL img): Original image
activation_map (numpy arr): Activation map (grayscale) 0-255
colormap_name (str): Name of the colormap
"""
# Get colormap
color_map = mpl_color_map.get_cmap(colormap_name)
no_trans_heatmap = color_map(activation)
# Change alpha channel in colormap to make sure original image is displayed
heatmap = copy.copy(no_trans_heatmap)
heatmap[:, :, 3] = 0.4
heatmap = Image.fromarray((heatmap*255).astype(np.uint8))
no_trans_heatmap = Image.fromarray((no_trans_heatmap*255).astype(np.uint8))
# Apply heatmap on image
heatmap_on_image = Image.new("RGBA", org_im.size)
heatmap_on_image = Image.alpha_composite(heatmap_on_image, org_im.convert('RGBA'))
heatmap_on_image = Image.alpha_composite(heatmap_on_image, heatmap)
return no_trans_heatmap, heatmap_on_image
示例2: plot_bidimensional
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import get_cmap [as 別名]
def plot_bidimensional(model, test, recon_error, layer, title):
bidimensional_data = model.deepfeatures(test, layer).cbind(recon_error).as_data_frame()
cmap = cm.get_cmap('Spectral')
fig, ax = plt.subplots()
bidimensional_data.plot(kind='scatter',
x='DF.L{}.C1'.format(layer + 1),
y='DF.L{}.C2'.format(layer + 1),
s=500,
c='Reconstruction.MSE',
title=title,
ax=ax,
colormap=cmap)
layer_column = 'DF.L{}.C'.format(layer + 1)
columns = [layer_column + '1', layer_column + '2']
for k, v in bidimensional_data[columns].iterrows():
ax.annotate(k, v, size=20, verticalalignment='bottom', horizontalalignment='left')
fig.canvas.draw()
plt.show()
示例3: construct_ball_trajectory
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import get_cmap [as 別名]
def construct_ball_trajectory(var, r=1., cmap='Blues', start_color=0.4, shape='c'):
# https://matplotlib.org/examples/color/colormaps_reference.html
patches = []
for pos in var:
if shape == 'c':
patches.append(mpatches.Circle(pos, r))
elif shape == 'r':
patches.append(mpatches.RegularPolygon(pos, 4, r))
elif shape == 's':
patches.append(mpatches.RegularPolygon(pos, 6, r))
colors = np.linspace(start_color, .9, len(patches))
collection = PatchCollection(patches, cmap=cm.get_cmap(cmap), alpha=1.)
collection.set_array(np.array(colors))
collection.set_clim(0, 1)
return collection
示例4: list_of_hex_colours
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import get_cmap [as 別名]
def list_of_hex_colours(N, base_cmap):
"""
Return a list of colors from a colourmap as hex codes
Arguments:
cmap: colormap instance, eg. cm.jet.
N: number of colors.
Author: FJC
"""
cmap = _cm.get_cmap(base_cmap, N)
hex_codes = []
for i in range(cmap.N):
rgb = cmap(i)[:3] # will return rgba, we take only first 3 so we get rgb
hex_codes.append(_mcolors.rgb2hex(rgb))
return hex_codes
示例5: cmap_discretize
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import get_cmap [as 別名]
def cmap_discretize(N, cmap):
"""Return a discrete colormap from the continuous colormap cmap.
Arguments:
cmap: colormap instance, eg. cm.jet.
N: number of colors.
Example:
x = resize(arange(100), (5,100))
djet = cmap_discretize(cm.jet, 5)
imshow(x, cmap=djet)
"""
if type(cmap) == str:
cmap = _plt.get_cmap(cmap)
colors_i = _np.concatenate((_np.linspace(0, 1., N), (0.,0.,0.,0.)))
colors_rgba = cmap(colors_i)
indices = _np.linspace(0, 1., N+1)
cdict = {}
for ki,key in enumerate(('red','green','blue')):
cdict[key] = [ (indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki])
for i in range(N+1) ]
# Return colormap object.
return _mcolors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024)
示例6: __init__
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import get_cmap [as 別名]
def __init__(self, cmap, levels):
if isinstance(cmap, str):
self.cmap = _cm.get_cmap(cmap)
elif isinstance(cmap, _mcolors.Colormap):
self.cmap = cmap
else:
raise ValueError('Colourmap must either be a string name of a colormap, \
or a Colormap object (class instance). Please try again.' \
"Colourmap supplied is of type: ", type(cmap))
self.N = self.cmap.N
self.monochrome = self.cmap.monochrome
self.levels = _np.asarray(levels)#, dtype='float64')
self._x = self.levels
self.levmax = self.levels.max()
self.levmin = self.levels.min()
self.transformed_levels = _np.linspace(self.levmin, self.levmax,
len(self.levels))
示例7: plotTZ
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import get_cmap [as 別名]
def plotTZ(filename=None):
t = np.linspace(0, 1, 101)
z = 0.25 + 0.5 / (1 + np.exp(- 20 * (t - 0.5))) + 0.05 * np.cos(t * 2 * np.pi)
cmap = cm.get_cmap('cool')
fig, (ax1, ax2) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[19, 1]})
poly1 = [[0, 0]]
poly1.extend([[t[i], z[i]] for i in range(t.size)])
poly1.extend([[1, 0], [0, 0]])
poly2 = [[0, 1]]
poly2.extend([[t[i], z[i]] for i in range(t.size)])
poly2.extend([[1, 1], [0, 1]])
poly1 = plt.Polygon(poly1,fc=cmap(0.0))
poly2 = plt.Polygon(poly2,fc=cmap(1.0))
ax1.add_patch(poly1)
ax1.add_patch(poly2)
ax1.set_xlabel('x1', size=22)
ax1.set_ylabel('x2', size=22)
ax1.set_title('True Data', size=28)
colorbar.ColorbarBase(ax2, cmap=cmap, format='%.1f')
ax2.set_ylabel('Output y', size=22)
plt.show()
if not filename is None:
plt.savefig(filename, format="pdf", bbox_inches="tight")
plt.close()
示例8: plotTZ
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import get_cmap [as 別名]
def plotTZ(filename=None):
cmap = cm.get_cmap('cool')
fig, (ax1, ax2) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[19, 1]})
ax1.add_patch(pl.Rectangle(xy=[0, 0], width=0.5, height=0.5, facecolor=cmap(0.0), linewidth='2.0'))
ax1.add_patch(pl.Rectangle(xy=[0.5, 0.5], width=0.5, height=0.5, facecolor=cmap(0.0), linewidth='2.0'))
ax1.add_patch(pl.Rectangle(xy=[0, 0.5], width=0.5, height=0.5, facecolor=cmap(1.0), linewidth='2.0'))
ax1.add_patch(pl.Rectangle(xy=[0.5, 0], width=0.5, height=0.5, facecolor=cmap(1.0), linewidth='2.0'))
ax1.set_xlabel('x1', size=22)
ax1.set_ylabel('x2', size=22)
ax1.set_title('True Data', size=28)
colorbar.ColorbarBase(ax2, cmap=cmap, format='%.1f')
ax2.set_ylabel('Output y', size=22)
plt.show()
if not filename is None:
plt.savefig(filename, format="pdf", bbox_inches="tight")
plt.close()
示例9: set_cmap
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import get_cmap [as 別名]
def set_cmap(cmap):
"""
Set the default colormap. Applies to the current image if any.
See help(colormaps) for more information.
*cmap* must be a :class:`~matplotlib.colors.Colormap` instance, or
the name of a registered colormap.
See :func:`matplotlib.cm.register_cmap` and
:func:`matplotlib.cm.get_cmap`.
"""
cmap = cm.get_cmap(cmap)
rc('image', cmap=cmap.name)
im = gci()
if im is not None:
im.set_cmap(cmap)
draw_if_interactive()
示例10: colorbar
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import get_cmap [as 別名]
def colorbar(mappable, cax=None, ax=None, **kw):
"""
Create a colorbar for a ScalarMappable instance.
Documentation for the pylab thin wrapper:
%(colorbar_doc)s
"""
import matplotlib.pyplot as plt
if ax is None:
ax = plt.gca()
if cax is None:
cax, kw = make_axes(ax, **kw)
cax.hold(True)
cb = Colorbar(cax, mappable, **kw)
def on_changed(m):
cb.set_cmap(m.get_cmap())
cb.set_clim(m.get_clim())
cb.update_bruteforce(m)
cbid = mappable.callbacksSM.connect('changed', on_changed)
mappable.colorbar = cb
ax.figure.sca(ax)
return cb
示例11: _get_cmap_norms
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import get_cmap [as 別名]
def _get_cmap_norms():
"""
Define a colormap and appropriate norms for each of the four
possible settings of the extend keyword.
Helper function for _colorbar_extension_shape and
colorbar_extension_length.
"""
# Create a color map and specify the levels it represents.
cmap = get_cmap("RdBu", lut=5)
clevs = [-5., -2.5, -.5, .5, 1.5, 3.5]
# Define norms for the color maps.
norms = dict()
norms['neither'] = BoundaryNorm(clevs, len(clevs) - 1)
norms['min'] = BoundaryNorm([-10] + clevs[1:], len(clevs) - 1)
norms['max'] = BoundaryNorm(clevs[:-1] + [10], len(clevs) - 1)
norms['both'] = BoundaryNorm([-10] + clevs[1:-1] + [10], len(clevs) - 1)
return cmap, norms
示例12: set_oggm_cmaps
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import get_cmap [as 別名]
def set_oggm_cmaps(use_hcl=None):
# Set global colormaps
global OGGM_CMAPS
if use_hcl is None:
use_hcl = HAS_HCL_CMAP
OGGM_CMAPS['terrain'] = colormap.terrain
if HAS_HCL_CMAP and use_hcl:
cm_divs = 100 # number of discrete colours from continuous colormaps
tcmap = sequential_hcl("Blue-Yellow", rev=True).cmap(cm_divs)
OGGM_CMAPS['section_thickness'] = tcmap
OGGM_CMAPS['glacier_thickness'] = tcmap
else:
OGGM_CMAPS['section_thickness'] = plt.cm.get_cmap('YlOrRd')
OGGM_CMAPS['glacier_thickness'] = plt.get_cmap('viridis')
示例13: _get_map_plot_options
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import get_cmap [as 別名]
def _get_map_plot_options(self, map_name):
cmap = get_cmap(self._get_map_attr(map_name, 'colormap', self._plot_config.colormap))
masked_color = self._get_map_attr(map_name, 'colormap_masked_color', self._plot_config.colormap_masked_color)
if masked_color is not None:
cmap.set_bad(color=masked_color)
output_dict = {'vmin': self._data_info.get_single_map_info(map_name).min(),
'vmax': self._data_info.get_single_map_info(map_name).max(),
'cmap': cmap}
scale = self._get_map_attr(map_name, 'scale', Scale())
if scale.use_max:
output_dict['vmax'] = scale.vmax
if scale.use_min:
output_dict['vmin'] = scale.vmin
return output_dict
示例14: set_cmap
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import get_cmap [as 別名]
def set_cmap(cmap):
"""
Set the default colormap. Applies to the current image if any.
See help(colormaps) for more information.
*cmap* must be a :class:`~matplotlib.colors.Colormap` instance, or
the name of a registered colormap.
See :func:`matplotlib.cm.register_cmap` and
:func:`matplotlib.cm.get_cmap`.
"""
cmap = cm.get_cmap(cmap)
rc('image', cmap=cmap.name)
im = gci()
if im is not None:
im.set_cmap(cmap)
示例15: colorbar
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import get_cmap [as 別名]
def colorbar(mappable, cax=None, ax=None, **kw):
"""
Create a colorbar for a ScalarMappable instance.
Documentation for the pyplot thin wrapper:
%s
"""
import matplotlib.pyplot as plt
if ax is None:
ax = plt.gca()
if cax is None:
cax, kw = make_axes(ax, **kw)
cb = Colorbar(cax, mappable, **kw)
def on_changed(m):
cb.set_cmap(m.get_cmap())
cb.set_clim(m.get_clim())
cb.update_bruteforce(m)
cbid = mappable.callbacksSM.connect('changed', on_changed)
mappable.colorbar = cb
ax.figure.sca(ax)
return cb