當前位置: 首頁>>代碼示例>>Python>>正文


Python cm.RdYlGn方法代碼示例

本文整理匯總了Python中matplotlib.cm.RdYlGn方法的典型用法代碼示例。如果您正苦於以下問題:Python cm.RdYlGn方法的具體用法?Python cm.RdYlGn怎麽用?Python cm.RdYlGn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.cm的用法示例。


在下文中一共展示了cm.RdYlGn方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: psf

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import RdYlGn [as 別名]
def psf(self,r=1,lambda_1=632*10**(-9),z=0.1):
		"""
		------------------------------------------------
		psf()

		Return the point spread function of a wavefront described by
		Zernike Polynomials
		------------------------------------------------
		Input:

		r: exit pupil radius(mm)

		lambda_1: wavelength(m)

		z: exit pupil to image plane distance(m)

		"""
		print(r,lambda_1,z)
		PSF = self.__psfcaculator__(r=r,lambda_1=lambda_1,z=z)
		fig = __plt__.figure(figsize=(9, 6), dpi=80)
		__plt__.imshow(abs(PSF),cmap=__cm__.RdYlGn)
		__plt__.colorbar()
		__plt__.show()
		return 0 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:26,代碼來源:zernike.py

示例2: aspheresurface

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import RdYlGn [as 別名]
def aspheresurface(self):
		"""
		Show the surface of an asphere.
		=============================================================
		Try: 
		A = opticspy.asphere.Coefficient(R=50,a2=0.18*10**(-8),a3 = 0.392629*10**(-13))

		"""
		R = self.__coefficients__[0]
		theta = __np__.linspace(0, 2*__np__.pi, 100)
		rho = __np__.linspace(0, R, 100)
		[u,r] = __np__.meshgrid(theta,rho)
		X = r*__cos__(u)
		Y = r*__sin__(u)
		Z = __aspherepolar__(self.__coefficients__,r)
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca(projection='3d')
		surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	        linewidth=0, antialiased=False, alpha = 0.6)
		__plt__.show()
		return 0 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:23,代碼來源:asphere.py

示例3: aspherematrix

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import RdYlGn [as 別名]
def aspherematrix(self):
		l = 100
		R = self.__coefficients__[0]
		x1 = __np__.linspace(-R, R, l)
		[X,Y] = __np__.meshgrid(x1,x1)
		r = __sqrt__(X**2+Y**2)
		Z = __aspherepolar__(self.__coefficients__,r)
		for i in range(l):
			for j in range(l):
				if x1[i]**2+x1[j]**2 > R**2:
					Z[i][j] = 0
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca(projection='3d')
		surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	        linewidth=0, antialiased=False, alpha = 0.6)
		__plt__.show()
		return Z 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:19,代碼來源:asphere.py

示例4: psf

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import RdYlGn [as 別名]
def psf(self,lambda_1=632*10**(-9),z=0.1):
		"""
		------------------------------------------------
		psf()

		Return the point spread function of a wavefront described by
		Orthonormal Rectangular Polynomials
		------------------------------------------------
		Input: 

		r: exit pupil radius(mm)

		lambda_1: wavelength(m)

		z: exit pupil to image plane distance(m)

		"""
		PSF = self.__psfcaculator__(lambda_1=lambda_1,z=z)
		fig = __plt__.figure(figsize=(9, 6), dpi=80)
		__plt__.imshow(abs(PSF),cmap=__cm__.RdYlGn)
		__plt__.colorbar()
		__plt__.show()
		return 0 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:25,代碼來源:zernike_rec.py

示例5: seidelsurface

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import RdYlGn [as 別名]
def seidelsurface(self, label = True, zlim=[], matrix = False):
		r1 = __np__.linspace(0, 1, 100)
		u1 = __np__.linspace(0, 2*__np__.pi, 100)
		[u,r] = __np__.meshgrid(u1,r1)
		X = r*__cos__(u)
		Y = r*__sin__(u)
		W = __seidelpolar__(self.__coefficients__,r,u)
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca(projection='3d')
		surf = ax.plot_surface(X, Y, W, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	        linewidth=0, antialiased=False, alpha = 0.6)
		fig.colorbar(surf, shrink=1, aspect=30)
		__plt__.show() 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:15,代碼來源:seidel.py

示例6: zernikesurface

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import RdYlGn [as 別名]
def zernikesurface(self):
		"""
		------------------------------------------------
		zernikesurface(self, label_1 = True):

		Return a 3D Zernike Polynomials surface figure

		label_1: default show label

		------------------------------------------------
		"""
		a = self.__a__
		b = __sqrt__(1-a**2)
		x1 = __np__.linspace(-a, a, 50)
		y1 = __np__.linspace(-b, b, 50)
		[X,Y] = __np__.meshgrid(x1,y1)
		Z = __zernikecartesian__(self.__coefficients__,a,X,Y)
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca(projection='3d')
		surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	        linewidth=0, antialiased=False, alpha = 0.6)

		ax.auto_scale_xyz([-1, 1], [-1, 1], [Z.max(), Z.min()])
		# ax.set_xlim(-a, a)
		# ax.set_ylim(-b, b)
		# v = max(abs(Z.max()),abs(Z.min()))
		# ax.set_zlim(-v*5, v*5)
		# cset = ax.contourf(X, Y, Z, zdir='z', offset=-v*5, cmap=__cm__.RdYlGn)

		# ax.zaxis.set_major_locator(__LinearLocator__(10))
		# ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
		fig.colorbar(surf, shrink=1, aspect=30)

		# p2v = round(__tools__.peak2valley(Z),5)
		# rms1 = round(__tools__.rms(Z),5)
		__plt__.show() 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:38,代碼來源:zernike_rec.py

示例7: zernikemap

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import RdYlGn [as 別名]
def zernikemap(self, label = True):
		"""
		------------------------------------------------
		zernikemap(self, label_1 = True):

		Return a 2D Zernike Polynomials map figure

		label: default show label

		------------------------------------------------
		"""


		theta = __np__.linspace(0, 2*__np__.pi, 400)
		rho = __np__.linspace(0, 1, 400)
		[u,r] = __np__.meshgrid(theta,rho)
		X = r*__cos__(u)
		Y = r*__sin__(u)
		Z = __interferometer__.__zernikepolar__(self.__coefficients__,r,u)
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca()
		im = __plt__.pcolormesh(X, Y, Z, cmap=__cm__.RdYlGn)

		if label == True:
			__plt__.title('Zernike Polynomials Surface Heat Map',fontsize=18)
			ax.set_xlabel(self.listcoefficient()[1],fontsize=18)
		__plt__.colorbar()
		ax.set_aspect('equal', 'datalim')
		__plt__.show() 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:31,代碼來源:zernike.py

示例8: __psfcaculator__

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import RdYlGn [as 別名]
def __psfcaculator__(self,r=1,lambda_1=632*10**(-9),z=0.1):
		"""
		pupil: Exit pupil diameter
		z: Distance from exit pupil to image plane
		r: pupil radius, in unit of lambda
		"""
		pupil = l1 = 200 # exit pupil sample points
		x = __np__.linspace(-r, r, l1)
		[X,Y] = __np__.meshgrid(x,x)
		Z = __interferometer__.__zernikecartesian__(self.__coefficients__,X,Y)
		for i in range(len(Z)):
			for j in range(len(Z)):
				if x[i]**2+x[j]**2>r**2:
					Z[i][j] = 0
		d = 400 # background
		A = __np__.zeros([d,d])
		A[d//2-l1//2+1:d//2+l1//2+1,d//2-l1//2+1:d//2+l1//2+1] = Z
		axis_1 = d//pupil*r
		fig = __plt__.figure()
		# ax = fig.gca()
		# __plt__.imshow(A,extent=[-axis_1,axis_1,-axis_1,axis_1],cmap=__cm__.RdYlGn)
		# ax.set_xlabel('mm',fontsize=14)
		# __plt__.colorbar()
		# __plt__.show()

		abbe = __np__.exp(-1j*2*__np__.pi*A)
		for i in range(len(abbe)):
			for j in range(len(abbe)):
				if abbe[i][j]==1:
					abbe[i][j]=0
		PSF = __fftshift__(__fft2__(__fftshift__(abbe)))**2
		PSF = PSF/PSF.max()
		return PSF 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:35,代碼來源:zernike.py

示例9: spherical_surf

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import RdYlGn [as 別名]
def spherical_surf(l1):
	R = 1.02
	l1 = l1  #surface matrix length
	theta = __np__.linspace(0, 2*__np__.pi, l1)
	rho = __np__.linspace(0, 1, l1)
	[u,r] = __np__.meshgrid(theta,rho)
	X = r*__cos__(u)
	Y = r*__sin__(u)
	Z = __sqrt__(R**2-r**2)-__sqrt__(R**2-1)
	v_1 = max(abs(Z.max()),abs(Z.min()))

	noise = (__np__.random.rand(len(Z),len(Z))*2-1)*0.05*v_1
	Z = Z+noise
	fig = __plt__.figure(figsize=(12, 8), dpi=80)
	ax = fig.gca(projection='3d')
	surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,\
								linewidth=0, antialiased=False, alpha = 0.6)
	v = max(abs(Z.max()),abs(Z.min()))
	ax.set_zlim(-1, 2)
	ax.zaxis.set_major_locator(__LinearLocator__(10))
	ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
	cset = ax.contourf(X, Y, Z, zdir='z', offset=-1, cmap=__cm__.RdYlGn)
	fig.colorbar(surf, shrink=1, aspect=30)
	__plt__.title('Test Surface: Spherical surface with some noise',fontsize=16)
	__plt__.show()

	#Generate test surface matrix from a detector
	x = __np__.linspace(-1, 1, l1)
	y = __np__.linspace(-1, 1, l1)
	[X,Y] = __np__.meshgrid(x,y)
	Z = __sqrt__(R**2-(X**2+Y**2))-__sqrt__(R**2-1)+noise
	for i in range(len(Z)):
		for j in range(len(Z)):
			if x[i]**2+y[j]**2>1:
				Z[i][j]=0
	return Z 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:38,代碼來源:test_surface.py

示例10: hartmann_rebuild

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import RdYlGn [as 別名]
def hartmann_rebuild(M,r):
	s = len(M)
	w = __np__.zeros([s,s])
	d = 2
	for n in range(s):
		label = 0
		for m in range(s):
			if M[n][m][0] == 0:
				pass
			elif (M[n][m][0] != 0 and label == 0):
				w[n,m] = 0
				label = 1
			elif (M[n][m][0] != 0 and label == 1):
				w[n,m] = w[n][m-1] + d/2/r*(M[n][m-1][2][0] + M[n][m][2][0])
			else:
				print('wrong')
	fig = __plt__.figure(2,figsize=(6, 6))
	__plt__.imshow(w)
	__plt__.show()
	# x = __np__.linspace(-1,1,s)
	# [X,Y] = __np__.meshgrid(x,x)
	# fig = __plt__.figure(figsize=(8, 8), dpi=80)
	# ax = fig.gca(projection='3d')
	# surf = ax.plot_surface(w, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	#         linewidth=0, antialiased=False, alpha = 0.6)
	# __plt__.show()

	return w


#Depth first search algorithm, use to find wavefrontase map(where) 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:33,代碼來源:hartmann.py

示例11: monthly_returns

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import RdYlGn [as 別名]
def monthly_returns(self, fund, ax=None):
        if ax is None:
            ax = plt.gca()

        # Compute the returns on a month-over-month basis.
        history = fund.history
        monthly_ret = self.__aggregate_returns(history, 'monthly')
        monthly_ret = monthly_ret.unstack()
        monthly_ret = np.round(monthly_ret, 3)
        monthly_ret.rename(
            columns={1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr',
                     5: 'May', 6: 'Jun', 7: 'Jul', 8: 'Aug',
                     9: 'Sep', 10: 'Oct', 11: 'Nov', 12: 'Dec'},
            inplace=True
        )

        # Create a heatmap showing the month-over-month returns of the portfolio
        # or the fund.
        sns.heatmap(
            monthly_ret.fillna(0) * 100.0, annot=True, fmt="0.1f",
            annot_kws={"size": 12}, alpha=1.0, center=0.0, cbar=False,
            cmap=cm.RdYlGn, ax=ax
        )
        ax.set_title('Monthly Returns (%)', fontweight='bold')
        ax.set_ylabel('')
        ax.set_yticklabels(ax.get_yticklabels(), rotation=0)
        ax.set_xlabel('')

        return ax 
開發者ID:JamesBrofos,項目名稱:Odin,代碼行數:31,代碼來源:visualizer.py

示例12: _plot_monthly_returns

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import RdYlGn [as 別名]
def _plot_monthly_returns(self, stats, ax=None, **kwargs):
        """
        Plots a heatmap of the monthly returns.
        """
        returns = stats['returns']
        if ax is None:
            ax = plt.gca()

        monthly_ret = perf.aggregate_returns(returns, 'monthly')
        monthly_ret = monthly_ret.unstack()
        monthly_ret = np.round(monthly_ret, 3)
        monthly_ret.rename(
            columns={1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr',
                     5: 'May', 6: 'Jun', 7: 'Jul', 8: 'Aug',
                     9: 'Sep', 10: 'Oct', 11: 'Nov', 12: 'Dec'},
            inplace=True
        )

        sns.heatmap(
            monthly_ret.fillna(0) * 100.0,
            annot=True,
            fmt="0.1f",
            annot_kws={"size": 8},
            alpha=1.0,
            center=0.0,
            cbar=False,
            cmap=cm.RdYlGn,
            ax=ax, **kwargs)
        ax.set_title('Monthly Returns (%)', fontweight='bold')
        ax.set_ylabel('')
        ax.set_yticklabels(ax.get_yticklabels(), rotation=0)
        ax.set_xlabel('')

        return ax 
開發者ID:mhallsmoore,項目名稱:qstrader,代碼行數:36,代碼來源:tearsheet.py

示例13: rebuild_surface

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import RdYlGn [as 別名]
def rebuild_surface(data, shifttype = "4-step", unwraptype = "unwrap2D", noise = True):
	"""
	Rebuild surface function
	============================================
	input
	--------------------------------------------
	data: Interferogram data from PSI
	shifttype: PSI type, default 4-step PSI
	unwraptype: phaseunwrap type, default "simple"

	output
	--------------------------------------------
	rebuild surface matrix
	"""
	if shifttype == "4-step" and unwraptype == "simple" and noise == False:
		I = data[0]
		PR = data[1]
		ph = __np__.arctan2((I[3]-I[1]),(I[0]-I[2]))
		fig = __plt__.figure(figsize=(9, 6), dpi=80)
		im = __plt__.imshow(ph,extent=[-PR,PR,-PR,PR],cmap=__cm__.RdYlGn)
		__plt__.title('Wrapped phase',fontsize=16)
		__plt__.colorbar()
		__plt__.show()
		#-----------------------Phase unwrap-------------------------
		rebuild_ph = __unwrap2D__(ph,type = "simple")
		rebuild_surface = rebuild_ph/2/__np__.pi*PR/2
		#------------------------------------------------------------
		fig = __plt__.figure(figsize=(9, 6), dpi=80)
		im = __plt__.imshow(rebuild_surface,extent=[-PR,PR,-PR,PR],cmap=__cm__.RdYlGn)
		__plt__.title('Rebuild Surface',fontsize=16)
		__plt__.colorbar()
		__plt__.show()
		return rebuild_surface

	elif shifttype == "4-step" and unwraptype == "unwrap2D" and noise == True:
		I = data[0]
		PR = data[1]
		M = data[2]
		s = data[3]
		r = __np__.linspace(-PR, PR, s)
		ph = __np__.arctan2((I[3]-I[1]),(I[0]-I[2]))
		fig = __plt__.figure(figsize=(9, 6), dpi=80)
		im = __plt__.imshow(ph,extent=[-PR,PR,-PR,PR],cmap=__cm__.RdYlGn)
		__plt__.title('Wrapped phase',fontsize=16)
		__plt__.colorbar()
		__plt__.show()
		#-----------------------Phase unwrap-------------------------
		ph1 = [ph,M,s]
		rebuild_ph = __unwrap2D__(ph1,noise = True)
		rebuild_surface = rebuild_ph/2/__np__.pi*PR/2
		__tools__.makecircle_boundary(rebuild_surface, r, PR, 0)
		fig = __plt__.figure(figsize=(9, 6), dpi=80)
		im = __plt__.imshow(rebuild_surface,extent=[-PR,PR,-PR,PR],cmap=__cm__.RdYlGn)
		__plt__.title('Rebuild Surface',fontsize=16)
		__plt__.colorbar()
		__plt__.show()
		return rebuild_surface

	else:
		print("No this kind of phase shift type")
		return 0 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:63,代碼來源:interferometer_zenike.py

示例14: zernikesurface

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import RdYlGn [as 別名]
def zernikesurface(self, label = True, zlim=[], matrix = False):
		"""
		------------------------------------------------
		zernikesurface(self, label_1 = True):

		Return a 3D Zernike Polynomials surface figure

		label_1: default show label

		------------------------------------------------
		"""
		theta = __np__.linspace(0, 2*__np__.pi, 100)
		rho = __np__.linspace(0, 1, 100)
		[u,r] = __np__.meshgrid(theta,rho)
		X = r*__cos__(u)
		Y = r*__sin__(u)
		Z = __interferometer__.__zernikepolar__(self.__coefficients__,r,u)
		fig = __plt__.figure(figsize=(12, 8), dpi=80)
		ax = fig.gca(projection='3d')
		surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=__cm__.RdYlGn,
	        linewidth=0, antialiased=False, alpha = 0.6)

		if zlim == []:
			v = max(abs(Z.max()),abs(Z.min()))
			ax.set_zlim(-v*5, v*5)
			cset = ax.contourf(X, Y, Z, zdir='z', offset=-v*5, cmap=__cm__.RdYlGn)
		else:
			ax.set_zlim(zlim[0], zlim[1])
			cset = ax.contourf(X, Y, Z, zdir='z', offset=zlim[0], cmap=__cm__.RdYlGn)

		ax.zaxis.set_major_locator(__LinearLocator__(10))
		ax.zaxis.set_major_formatter(__FormatStrFormatter__('%.02f'))
		fig.colorbar(surf, shrink=1, aspect=30)


		p2v = round(__tools__.peak2valley(Z),5)
		rms1 = round(__tools__.rms(Z),5)

		label_1 = self.listcoefficient()[0]+"P-V: "+str(p2v)+"\n"+"RMS: "+str(rms1)
		if label == True:
			__plt__.title('Zernike Polynomials Surface',fontsize=18)
			ax.text2D(0.02, 0.1, label_1, transform=ax.transAxes,fontsize=14)
		else:
			pass
		__plt__.show()

		if matrix == True:
			return Z
		else:
			pass 
開發者ID:Sterncat,項目名稱:opticspy,代碼行數:52,代碼來源:zernike.py

示例15: plot_monthly_ic_heatmap

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import RdYlGn [as 別名]
def plot_monthly_ic_heatmap(mean_monthly_ic, ax=None):

    mean_monthly_ic = mean_monthly_ic.copy()

    num_plots = len(mean_monthly_ic.columns)

    v_spaces = ((num_plots - 1) // 3) + 1

    if ax is None:
        f, ax = plt.subplots(v_spaces, 3, figsize=(18, v_spaces * 6))
        ax = ax.flatten()

    new_index_year = []
    new_index_month = []
    for date in mean_monthly_ic.index:
        new_index_year.append(date.year)
        new_index_month.append(date.month)

    mean_monthly_ic.index = pd.MultiIndex.from_arrays(
        [new_index_year, new_index_month], names=["year", "month"]
    )

    for a, (period, ic) in zip(ax, mean_monthly_ic.iteritems()):
        periods_num = period.replace('period_', '')

        sns.heatmap(
            ic.unstack(),
            annot=True,
            alpha=1.0,
            center=0.0,
            annot_kws={"size": 15},
            linewidths=0.01,
            linecolor='white',
            cmap=cm.RdYlGn,
            cbar=False,
            ax=a
        )
        a.set(ylabel='', xlabel='')
        a.set_title(ICHEATMAP.get("TITLE").format(periods_num))

    if num_plots < len(ax):
        for a in ax[num_plots:]:
            a.set_visible(False)

    return ax 
開發者ID:JoinQuant,項目名稱:jqfactor_analyzer,代碼行數:47,代碼來源:plotting.py


注:本文中的matplotlib.cm.RdYlGn方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。