當前位置: 首頁>>代碼示例>>Python>>正文


Python cm.Greys_r方法代碼示例

本文整理匯總了Python中matplotlib.cm.Greys_r方法的典型用法代碼示例。如果您正苦於以下問題:Python cm.Greys_r方法的具體用法?Python cm.Greys_r怎麽用?Python cm.Greys_r使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.cm的用法示例。


在下文中一共展示了cm.Greys_r方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot_images

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def plot_images(ax, images, shape, color = False):
     # finally save to file
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

    # flip 0 to 1
    images = 1.0 - images

    images = reshape_and_tile_images(images, shape, n_cols=len(images))
    if color:
        from matplotlib import cm
        plt.imshow(images, cmap=cm.Greys_r, interpolation='nearest')
    else:
        plt.imshow(images, cmap='Greys')
    ax.axis('off') 
開發者ID:YingzhenLi,項目名稱:Dropout_BBalpha,代碼行數:18,代碼來源:loading_utils.py

示例2: slice_save

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def slice_save(self, astr_outputFile):
        '''
        Saves a single slice.

        ARGS

        o astr_output
        The output filename to save the slice to.
        '''
        self.dp.qprint('Outputfile = %s' % astr_outputFile)
        fformat = astr_outputFile.split('.')[-1]
        if fformat == 'dcm':
            if self._dcm:
                self._dcm.pixel_array.flat = self._Mnp_2Dslice.flat
                self._dcm.PixelData = self._dcm.pixel_array.tostring()
                self._dcm.save_as(astr_outputFile)
            else:
                raise ValueError('dcm output format only available for DICOM files')
        else:
            pylab.imsave(astr_outputFile, self._Mnp_2Dslice, format=fformat, cmap = cm.Greys_r) 
開發者ID:FNNDSC,項目名稱:med2image,代碼行數:22,代碼來源:med2image.py

示例3: plot_images

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def plot_images(images, shape, path, filename, n_rows = 10, color = True):
     # finally save to file
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    images = reshape_and_tile_images(images, shape, n_rows)
    if color:
        from matplotlib import cm
        plt.imsave(fname=path+filename+".png", arr=images, cmap=cm.Greys_r)
    else:
        plt.imsave(fname=path+filename+".png", arr=images, cmap='Greys')
    #plt.axis('off')
    #plt.tight_layout()
    #plt.savefig(path + filename + ".png", format="png")
    print "saving image to " + path + filename + ".png"
    plt.close() 
開發者ID:nvcuong,項目名稱:variational-continual-learning,代碼行數:18,代碼來源:visualisation.py

示例4: dsp_img

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def dsp_img(v, new_figure=True):

    import matplotlib.pyplot as plt

    if new_figure:
        fig = plt.figure()
        ax = fig.add_subplot(111)
    else:
        ax = plt


    import matplotlib.cm as cm
    
    ax_u = ax.imshow(  v, cmap = cm.Greys_r )
    ax.axis('off') # clear x- and y-axes

    plt.pause(0.001)        # calling pause will display the figure without blocking the program, see segmentation.active_contour.morphsnakes.evolve_visual 
開發者ID:xulabs,項目名稱:aitom,代碼行數:19,代碼來源:util.py

示例5: conv

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def conv(image, im_filter):
    """
    :param image: grayscale image as a 2-dimensional numpy array
    :param im_filter: 2-dimensional numpy array
    """

    # input dimensions
    height = image.shape[0]
    width = image.shape[1]

    # output image with reduced dimensions
    im_c = np.zeros((height - len(im_filter) + 1,
                     width - len(im_filter) + 1))

    # iterate over all rows and columns
    for row in range(len(im_c)):
        for col in range(len(im_c[0])):
            # apply the filter
            for i in range(len(im_filter)):
                for j in range(len(im_filter[0])):
                    im_c[row, col] += image[row + i, col + j] * im_filter[i][j]

    # fix out-of-bounds values
    im_c[im_c > 255] = 255
    im_c[im_c < 0] = 0

    # plot images for comparison
    import matplotlib.pyplot as plt
    import matplotlib.cm as cm

    plt.figure()
    plt.imshow(image, cmap=cm.Greys_r)
    plt.show()

    plt.imshow(im_c, cmap=cm.Greys_r)
    plt.show() 
開發者ID:ivan-vasilev,項目名稱:Python-Deep-Learning-SE,代碼行數:38,代碼來源:chapter_04_001.py

示例6: visualize_att

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def visualize_att(image_path, seq, alphas, rev_word_map, smooth=True):
    """
    Visualizes caption with weights at every word.

    Adapted from paper authors' repo: https://github.com/kelvinxu/arctic-captions/blob/master/alpha_visualization.ipynb

    :param image_path: path to image that has been captioned
    :param seq: caption
    :param alphas: weights
    :param rev_word_map: reverse word mapping, i.e. ix2word
    :param smooth: smooth weights?
    """
    image = Image.open(image_path)
    image = image.resize([14 * 24, 14 * 24], Image.LANCZOS)

    words = [rev_word_map[ind] for ind in seq]

    for t in range(len(words)):
        if t > 50:
            break
        plt.subplot(np.ceil(len(words) / 5.), 5, t + 1)

        plt.text(0, 1, '%s' % (words[t]), color='black', backgroundcolor='white', fontsize=12)
        plt.imshow(image)
        current_alpha = alphas[t, :]
        if smooth:
            alpha = skimage.transform.pyramid_expand(current_alpha.numpy(), upscale=24, sigma=8)
        else:
            alpha = skimage.transform.resize(current_alpha.numpy(), [14 * 24, 14 * 24])
        if t == 0:
            plt.imshow(alpha, alpha=0)
        else:
            plt.imshow(alpha, alpha=0.8)
        plt.set_cmap(cm.Greys_r)
        plt.axis('off')
    plt.show() 
開發者ID:sgrvinod,項目名稱:a-PyTorch-Tutorial-to-Image-Captioning,代碼行數:38,代碼來源:caption.py

示例7: plot_parameter

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def plot_parameter(theta_in, base_fname_part1, base_fname_part2="", title = '', n_colors=None):
    """
    Save both a raw and receptive field style plot of the contents of theta_in.
    base_fname_part1 provides the mandatory root of the filename.
    """

    theta = np.array(theta_in.copy()) # in case it was a scalar
    print "%s min %g median %g mean %g max %g shape"%(
        title, np.min(theta), np.median(theta), np.mean(theta), np.max(theta)), theta.shape
    theta = np.squeeze(theta)
    if len(theta.shape) == 0:
        # it's a scalar -- make it a 1d array
        theta = np.array([theta])
    shp = theta.shape
    if len(shp) > 2:
        theta = theta.reshape((theta.shape[0], -1))
        shp = theta.shape

    ## display basic figure
    plt.figure(figsize=[8,8])
    if len(shp) == 1:
        plt.plot(theta, '.', alpha=0.5)
    elif len(shp) == 2:
        plt.imshow(theta, interpolation='nearest', aspect='auto', cmap=cm.Greys_r)
        plt.colorbar()

    plt.title(title)
    plt.savefig(base_fname_part1 + '_raw_' + base_fname_part2 + '.pdf')
    plt.close()

    ## also display it in basis function view if it's a matrix, or
    ## if it's a bias with a square number of entries
    if len(shp) >= 2 or is_square(shp[0]):
        if len(shp) == 1:
            theta = theta.reshape((-1,1))
        plt.figure(figsize=[8,8])
        if show_receptive_fields(theta, n_colors=n_colors):
            plt.suptitle(title + "receptive fields")
            plt.savefig(base_fname_part1 + '_rf_' + base_fname_part2 + '.pdf')
        plt.close() 
開發者ID:Sohl-Dickstein,項目名稱:Diffusion-Probabilistic-Models,代碼行數:42,代碼來源:viz.py

示例8: save_image_matplotlib

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def save_image_matplotlib(m, out_file, vmin=None, vmax=None):
    import matplotlib.pyplot as PLT
    import matplotlib.cm as CM

    if vmin is None:        vmin = m.min()
    if vmax is None:        vmax = m.max()

    ax_u = PLT.imshow(  m, cmap = CM.Greys_r, vmin=vmin, vmax=vmax)
    PLT.axis('off')
    PLT.draw()

    PLT.savefig(out_file, bbox_inches='tight')
    PLT.close("all") 
開發者ID:xulabs,項目名稱:aitom,代碼行數:15,代碼來源:io.py

示例9: __display_image__

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def __display_image__(self,subject_id,args_l,kwargs_l,block=True,title=None):
        """
        return the file names for all the images associated with a given subject_id
        also download them if necessary
        :param subject_id:
        :return:
        """
        subject = self.subject_collection.find_one({"zooniverse_id": subject_id})
        url = subject["location"]["standard"]

        slash_index = url.rfind("/")
        object_id = url[slash_index+1:]

        if not(os.path.isfile(self.base_directory+"/Databases/"+self.project+"/images/"+object_id)):
            urllib.urlretrieve(url, self.base_directory+"/Databases/"+self.project+"/images/"+object_id)

        fname = self.base_directory+"/Databases/"+self.project+"/images/"+object_id

        image_file = cbook.get_sample_data(fname)
        image = plt.imread(image_file)

        fig, ax = plt.subplots()
        im = ax.imshow(image,cmap = cm.Greys_r)

        for args,kwargs in zip(args_l,kwargs_l):
            print args,kwargs
            ax.plot(*args,**kwargs)

        if title is not None:
            ax.set_title(title)
        plt.show(block=block) 
開發者ID:zooniverse,項目名稱:aggregation,代碼行數:33,代碼來源:ouroboros_api.py

示例10: plan_trajectory_with_ui

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def plan_trajectory_with_ui(img):
    fig = ppl.gcf()
    fig.clf()
    ax = fig.add_subplot(1, 1, 1)
    ax.imshow(img, cmap=cm.Greys_r)
    ax.axis('image')
    ppl.draw()
    print 'Map is', len(img[0]), 'x', len(img)
    start, goal = select_start_goal_points(ax, img)
    path = rrt(img, start, goal, ax)
    return path 
開發者ID:SiyuanQi,項目名稱:grammar-activity-prediction,代碼行數:13,代碼來源:rrt.py

示例11: infer

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def infer(model, fnImg):
    "recognize text in image provided by file path"
    img = create_image2(fnImg, model.imgSize)
    plt.imshow(img,cmap = cm.Greys_r)
    batch = Batch(None, [img])
    (recognized, probability) = model.inferBatch(batch, True)
    print('Recognized:', '"' + recognized[0] + '"')
    print('Probability:', probability[0])
    print(recognized)


#from pyAudioAnalysis.audioSegmentation import silence_removal 
開發者ID:ag1le,項目名稱:LSTM_morse,代碼行數:14,代碼來源:MorseDecoder.py

示例12: visualize_att

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def visualize_att(image_path, seq, alphas, rev_word_map, i, smooth=True):
    """
    Visualizes caption with weights at every word.
    Adapted from paper authors' repo: https://github.com/kelvinxu/arctic-captions/blob/master/alpha_visualization.ipynb
    :param image_path: path to image that has been captioned
    :param seq: caption
    :param alphas: weights
    :param rev_word_map: reverse word mapping, i.e. ix2word
    :param smooth: smooth weights?
    """
    image = Image.open(image_path)
    image = image.resize([14 * 24, 14 * 24], Image.LANCZOS)

    words = [rev_word_map[ind] for ind in seq]
    print(words)

    for t in range(len(words)):
        if t > 50:
            break
        plt.subplot(np.ceil(len(words) / 5.), 5, t + 1)

        plt.text(0, 1, '%s' % (words[t]), color='black', backgroundcolor='white', fontsize=12)
        plt.imshow(image)
        current_alpha = alphas[t, :]
        if smooth:
            alpha = skimage.transform.pyramid_expand(current_alpha.numpy(), upscale=24, sigma=8)
        else:
            alpha = skimage.transform.resize(current_alpha.numpy(), [14 * 24, 14 * 24])
        if t == 0:
            plt.imshow(alpha, alpha=0)
        else:
            plt.imshow(alpha, alpha=0.8)
        plt.set_cmap(cm.Greys_r)
        plt.axis('off')

    plt.savefig('images/out_{}.jpg'.format(i))
    plt.close() 
開發者ID:foamliu,項目名稱:Image-Captioning-PyTorch,代碼行數:39,代碼來源:demo.py

示例13: plot_results

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def plot_results(x_test, x_test_im, sensMap, predDiff, tarFunc, classnames, testIdx, save_path):
    '''
    Plot the results of the relevance estimation
    '''
    imsize = x_test.shape  
    
    tarIdx = np.argmax(tarFunc(x_test)[-1])
    tarClass = classnames[tarIdx]
    #tarIdx = 287
    
    plt.figure()
    plt.subplot(2,2,1)
    plt.imshow(x_test_im, interpolation='nearest')
    plt.title('original')
    frame = pylab.gca()
    frame.axes.get_xaxis().set_ticks([])
    frame.axes.get_yaxis().set_ticks([]) 
    plt.subplot(2,2,2)
    plt.imshow(sensMap, cmap=cm.Greys_r, interpolation='nearest')
    plt.title('sensitivity map')
    frame = pylab.gca()
    frame.axes.get_xaxis().set_ticks([])
    frame.axes.get_yaxis().set_ticks([]) 
    plt.subplot(2,2,3)
    p = predDiff.reshape((imsize[1],imsize[2],-1))[:,:,tarIdx]
    plt.imshow(p, cmap=cm.seismic, vmin=-np.max(np.abs(p)), vmax=np.max(np.abs(p)), interpolation='nearest')
    plt.colorbar()
    #plt.imshow(np.abs(p), cmap=cm.Greys_r)
    plt.title('weight of evidence')
    frame = pylab.gca()
    frame.axes.get_xaxis().set_ticks([])
    frame.axes.get_yaxis().set_ticks([]) 
    plt.subplot(2,2,4)
    plt.title('class: {}'.format(tarClass))
    p = get_overlayed_image(x_test_im, p)
    #p = predDiff[0,:,:,np.argmax(netPred(net, x_test)[0]),1].reshape((224,224))
    plt.imshow(p, cmap=cm.seismic, vmin=-np.max(np.abs(p)), vmax=np.max(np.abs(p)), interpolation='nearest')
    #plt.title('class entropy')
    frame = pylab.gca()
    frame.axes.get_xaxis().set_ticks([])
    frame.axes.get_yaxis().set_ticks([]) 
    
    fig = plt.gcf()
    fig.set_size_inches(np.array([12,12]), forward=True)
    plt.tight_layout()
    plt.tight_layout()
    plt.tight_layout()
    plt.savefig(save_path)
    plt.close() 
開發者ID:lmzintgraf,項目名稱:DeepVis-PredDiff,代碼行數:51,代碼來源:utils_visualise.py

示例14: plot_imgs

# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def plot_imgs(imgs, samp_names, step_nums, vmin = -2, vmax = 2):
    plt.figure(figsize=(5.5,3.6))

    nsamplers = len(samp_names)
    nsteps = len(step_nums)

    plt.subplot(nsamplers+1, nsteps+1, 1)
    plt.axis('off')
    plt.text(0.9, -0.1, "# grads",
        horizontalalignment='right',
        verticalalignment='bottom')

    for step_i in range(nsteps):
        plt.subplot(nsamplers+1, nsteps+1, 2 + step_i)
        plt.axis('off')
        plt.text(0.5, -0.1, "%d"%step_nums[step_i],
            horizontalalignment='center',
            verticalalignment='bottom')
    for samp_i in range(nsamplers):
        plt.subplot(nsamplers+1, nsteps+1, 1 + (samp_i+1)*(nsteps+1))
        plt.axis('off')
        plt.text(0.9, 0.5, samp_names[samp_i],
            horizontalalignment='right',
            verticalalignment='center')


    for samp_i in range(nsamplers):
        for step_i in range(nsteps):
            plt.subplot(nsamplers+1, nsteps+1, 2 + step_i + (samp_i+1)*(nsteps+1))

            ptch = imgs[samp_i][step_i].copy()
            img_w = np.sqrt(np.prod(ptch.shape))
            ptch = ptch.reshape((img_w, img_w))

            ptch -= vmin
            ptch /= vmax-vmin
            plt.imshow(ptch, interpolation='nearest', cmap=cm.Greys_r )
            plt.axis('off')

    # plt.tight_layout()
    plt.savefig('poe_samples.pdf')
    plt.close() 
開發者ID:rueberger,項目名稱:MJHMC,代碼行數:44,代碼來源:poe_fig.py


注:本文中的matplotlib.cm.Greys_r方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。