本文整理匯總了Python中matplotlib.cm.Greys_r方法的典型用法代碼示例。如果您正苦於以下問題:Python cm.Greys_r方法的具體用法?Python cm.Greys_r怎麽用?Python cm.Greys_r使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.cm
的用法示例。
在下文中一共展示了cm.Greys_r方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_images
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def plot_images(ax, images, shape, color = False):
# finally save to file
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# flip 0 to 1
images = 1.0 - images
images = reshape_and_tile_images(images, shape, n_cols=len(images))
if color:
from matplotlib import cm
plt.imshow(images, cmap=cm.Greys_r, interpolation='nearest')
else:
plt.imshow(images, cmap='Greys')
ax.axis('off')
示例2: slice_save
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def slice_save(self, astr_outputFile):
'''
Saves a single slice.
ARGS
o astr_output
The output filename to save the slice to.
'''
self.dp.qprint('Outputfile = %s' % astr_outputFile)
fformat = astr_outputFile.split('.')[-1]
if fformat == 'dcm':
if self._dcm:
self._dcm.pixel_array.flat = self._Mnp_2Dslice.flat
self._dcm.PixelData = self._dcm.pixel_array.tostring()
self._dcm.save_as(astr_outputFile)
else:
raise ValueError('dcm output format only available for DICOM files')
else:
pylab.imsave(astr_outputFile, self._Mnp_2Dslice, format=fformat, cmap = cm.Greys_r)
示例3: plot_images
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def plot_images(images, shape, path, filename, n_rows = 10, color = True):
# finally save to file
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
images = reshape_and_tile_images(images, shape, n_rows)
if color:
from matplotlib import cm
plt.imsave(fname=path+filename+".png", arr=images, cmap=cm.Greys_r)
else:
plt.imsave(fname=path+filename+".png", arr=images, cmap='Greys')
#plt.axis('off')
#plt.tight_layout()
#plt.savefig(path + filename + ".png", format="png")
print "saving image to " + path + filename + ".png"
plt.close()
示例4: dsp_img
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def dsp_img(v, new_figure=True):
import matplotlib.pyplot as plt
if new_figure:
fig = plt.figure()
ax = fig.add_subplot(111)
else:
ax = plt
import matplotlib.cm as cm
ax_u = ax.imshow( v, cmap = cm.Greys_r )
ax.axis('off') # clear x- and y-axes
plt.pause(0.001) # calling pause will display the figure without blocking the program, see segmentation.active_contour.morphsnakes.evolve_visual
示例5: conv
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def conv(image, im_filter):
"""
:param image: grayscale image as a 2-dimensional numpy array
:param im_filter: 2-dimensional numpy array
"""
# input dimensions
height = image.shape[0]
width = image.shape[1]
# output image with reduced dimensions
im_c = np.zeros((height - len(im_filter) + 1,
width - len(im_filter) + 1))
# iterate over all rows and columns
for row in range(len(im_c)):
for col in range(len(im_c[0])):
# apply the filter
for i in range(len(im_filter)):
for j in range(len(im_filter[0])):
im_c[row, col] += image[row + i, col + j] * im_filter[i][j]
# fix out-of-bounds values
im_c[im_c > 255] = 255
im_c[im_c < 0] = 0
# plot images for comparison
import matplotlib.pyplot as plt
import matplotlib.cm as cm
plt.figure()
plt.imshow(image, cmap=cm.Greys_r)
plt.show()
plt.imshow(im_c, cmap=cm.Greys_r)
plt.show()
示例6: visualize_att
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def visualize_att(image_path, seq, alphas, rev_word_map, smooth=True):
"""
Visualizes caption with weights at every word.
Adapted from paper authors' repo: https://github.com/kelvinxu/arctic-captions/blob/master/alpha_visualization.ipynb
:param image_path: path to image that has been captioned
:param seq: caption
:param alphas: weights
:param rev_word_map: reverse word mapping, i.e. ix2word
:param smooth: smooth weights?
"""
image = Image.open(image_path)
image = image.resize([14 * 24, 14 * 24], Image.LANCZOS)
words = [rev_word_map[ind] for ind in seq]
for t in range(len(words)):
if t > 50:
break
plt.subplot(np.ceil(len(words) / 5.), 5, t + 1)
plt.text(0, 1, '%s' % (words[t]), color='black', backgroundcolor='white', fontsize=12)
plt.imshow(image)
current_alpha = alphas[t, :]
if smooth:
alpha = skimage.transform.pyramid_expand(current_alpha.numpy(), upscale=24, sigma=8)
else:
alpha = skimage.transform.resize(current_alpha.numpy(), [14 * 24, 14 * 24])
if t == 0:
plt.imshow(alpha, alpha=0)
else:
plt.imshow(alpha, alpha=0.8)
plt.set_cmap(cm.Greys_r)
plt.axis('off')
plt.show()
示例7: plot_parameter
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def plot_parameter(theta_in, base_fname_part1, base_fname_part2="", title = '', n_colors=None):
"""
Save both a raw and receptive field style plot of the contents of theta_in.
base_fname_part1 provides the mandatory root of the filename.
"""
theta = np.array(theta_in.copy()) # in case it was a scalar
print "%s min %g median %g mean %g max %g shape"%(
title, np.min(theta), np.median(theta), np.mean(theta), np.max(theta)), theta.shape
theta = np.squeeze(theta)
if len(theta.shape) == 0:
# it's a scalar -- make it a 1d array
theta = np.array([theta])
shp = theta.shape
if len(shp) > 2:
theta = theta.reshape((theta.shape[0], -1))
shp = theta.shape
## display basic figure
plt.figure(figsize=[8,8])
if len(shp) == 1:
plt.plot(theta, '.', alpha=0.5)
elif len(shp) == 2:
plt.imshow(theta, interpolation='nearest', aspect='auto', cmap=cm.Greys_r)
plt.colorbar()
plt.title(title)
plt.savefig(base_fname_part1 + '_raw_' + base_fname_part2 + '.pdf')
plt.close()
## also display it in basis function view if it's a matrix, or
## if it's a bias with a square number of entries
if len(shp) >= 2 or is_square(shp[0]):
if len(shp) == 1:
theta = theta.reshape((-1,1))
plt.figure(figsize=[8,8])
if show_receptive_fields(theta, n_colors=n_colors):
plt.suptitle(title + "receptive fields")
plt.savefig(base_fname_part1 + '_rf_' + base_fname_part2 + '.pdf')
plt.close()
示例8: save_image_matplotlib
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def save_image_matplotlib(m, out_file, vmin=None, vmax=None):
import matplotlib.pyplot as PLT
import matplotlib.cm as CM
if vmin is None: vmin = m.min()
if vmax is None: vmax = m.max()
ax_u = PLT.imshow( m, cmap = CM.Greys_r, vmin=vmin, vmax=vmax)
PLT.axis('off')
PLT.draw()
PLT.savefig(out_file, bbox_inches='tight')
PLT.close("all")
示例9: __display_image__
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def __display_image__(self,subject_id,args_l,kwargs_l,block=True,title=None):
"""
return the file names for all the images associated with a given subject_id
also download them if necessary
:param subject_id:
:return:
"""
subject = self.subject_collection.find_one({"zooniverse_id": subject_id})
url = subject["location"]["standard"]
slash_index = url.rfind("/")
object_id = url[slash_index+1:]
if not(os.path.isfile(self.base_directory+"/Databases/"+self.project+"/images/"+object_id)):
urllib.urlretrieve(url, self.base_directory+"/Databases/"+self.project+"/images/"+object_id)
fname = self.base_directory+"/Databases/"+self.project+"/images/"+object_id
image_file = cbook.get_sample_data(fname)
image = plt.imread(image_file)
fig, ax = plt.subplots()
im = ax.imshow(image,cmap = cm.Greys_r)
for args,kwargs in zip(args_l,kwargs_l):
print args,kwargs
ax.plot(*args,**kwargs)
if title is not None:
ax.set_title(title)
plt.show(block=block)
示例10: plan_trajectory_with_ui
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def plan_trajectory_with_ui(img):
fig = ppl.gcf()
fig.clf()
ax = fig.add_subplot(1, 1, 1)
ax.imshow(img, cmap=cm.Greys_r)
ax.axis('image')
ppl.draw()
print 'Map is', len(img[0]), 'x', len(img)
start, goal = select_start_goal_points(ax, img)
path = rrt(img, start, goal, ax)
return path
示例11: infer
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def infer(model, fnImg):
"recognize text in image provided by file path"
img = create_image2(fnImg, model.imgSize)
plt.imshow(img,cmap = cm.Greys_r)
batch = Batch(None, [img])
(recognized, probability) = model.inferBatch(batch, True)
print('Recognized:', '"' + recognized[0] + '"')
print('Probability:', probability[0])
print(recognized)
#from pyAudioAnalysis.audioSegmentation import silence_removal
示例12: visualize_att
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def visualize_att(image_path, seq, alphas, rev_word_map, i, smooth=True):
"""
Visualizes caption with weights at every word.
Adapted from paper authors' repo: https://github.com/kelvinxu/arctic-captions/blob/master/alpha_visualization.ipynb
:param image_path: path to image that has been captioned
:param seq: caption
:param alphas: weights
:param rev_word_map: reverse word mapping, i.e. ix2word
:param smooth: smooth weights?
"""
image = Image.open(image_path)
image = image.resize([14 * 24, 14 * 24], Image.LANCZOS)
words = [rev_word_map[ind] for ind in seq]
print(words)
for t in range(len(words)):
if t > 50:
break
plt.subplot(np.ceil(len(words) / 5.), 5, t + 1)
plt.text(0, 1, '%s' % (words[t]), color='black', backgroundcolor='white', fontsize=12)
plt.imshow(image)
current_alpha = alphas[t, :]
if smooth:
alpha = skimage.transform.pyramid_expand(current_alpha.numpy(), upscale=24, sigma=8)
else:
alpha = skimage.transform.resize(current_alpha.numpy(), [14 * 24, 14 * 24])
if t == 0:
plt.imshow(alpha, alpha=0)
else:
plt.imshow(alpha, alpha=0.8)
plt.set_cmap(cm.Greys_r)
plt.axis('off')
plt.savefig('images/out_{}.jpg'.format(i))
plt.close()
示例13: plot_results
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def plot_results(x_test, x_test_im, sensMap, predDiff, tarFunc, classnames, testIdx, save_path):
'''
Plot the results of the relevance estimation
'''
imsize = x_test.shape
tarIdx = np.argmax(tarFunc(x_test)[-1])
tarClass = classnames[tarIdx]
#tarIdx = 287
plt.figure()
plt.subplot(2,2,1)
plt.imshow(x_test_im, interpolation='nearest')
plt.title('original')
frame = pylab.gca()
frame.axes.get_xaxis().set_ticks([])
frame.axes.get_yaxis().set_ticks([])
plt.subplot(2,2,2)
plt.imshow(sensMap, cmap=cm.Greys_r, interpolation='nearest')
plt.title('sensitivity map')
frame = pylab.gca()
frame.axes.get_xaxis().set_ticks([])
frame.axes.get_yaxis().set_ticks([])
plt.subplot(2,2,3)
p = predDiff.reshape((imsize[1],imsize[2],-1))[:,:,tarIdx]
plt.imshow(p, cmap=cm.seismic, vmin=-np.max(np.abs(p)), vmax=np.max(np.abs(p)), interpolation='nearest')
plt.colorbar()
#plt.imshow(np.abs(p), cmap=cm.Greys_r)
plt.title('weight of evidence')
frame = pylab.gca()
frame.axes.get_xaxis().set_ticks([])
frame.axes.get_yaxis().set_ticks([])
plt.subplot(2,2,4)
plt.title('class: {}'.format(tarClass))
p = get_overlayed_image(x_test_im, p)
#p = predDiff[0,:,:,np.argmax(netPred(net, x_test)[0]),1].reshape((224,224))
plt.imshow(p, cmap=cm.seismic, vmin=-np.max(np.abs(p)), vmax=np.max(np.abs(p)), interpolation='nearest')
#plt.title('class entropy')
frame = pylab.gca()
frame.axes.get_xaxis().set_ticks([])
frame.axes.get_yaxis().set_ticks([])
fig = plt.gcf()
fig.set_size_inches(np.array([12,12]), forward=True)
plt.tight_layout()
plt.tight_layout()
plt.tight_layout()
plt.savefig(save_path)
plt.close()
示例14: plot_imgs
# 需要導入模塊: from matplotlib import cm [as 別名]
# 或者: from matplotlib.cm import Greys_r [as 別名]
def plot_imgs(imgs, samp_names, step_nums, vmin = -2, vmax = 2):
plt.figure(figsize=(5.5,3.6))
nsamplers = len(samp_names)
nsteps = len(step_nums)
plt.subplot(nsamplers+1, nsteps+1, 1)
plt.axis('off')
plt.text(0.9, -0.1, "# grads",
horizontalalignment='right',
verticalalignment='bottom')
for step_i in range(nsteps):
plt.subplot(nsamplers+1, nsteps+1, 2 + step_i)
plt.axis('off')
plt.text(0.5, -0.1, "%d"%step_nums[step_i],
horizontalalignment='center',
verticalalignment='bottom')
for samp_i in range(nsamplers):
plt.subplot(nsamplers+1, nsteps+1, 1 + (samp_i+1)*(nsteps+1))
plt.axis('off')
plt.text(0.9, 0.5, samp_names[samp_i],
horizontalalignment='right',
verticalalignment='center')
for samp_i in range(nsamplers):
for step_i in range(nsteps):
plt.subplot(nsamplers+1, nsteps+1, 2 + step_i + (samp_i+1)*(nsteps+1))
ptch = imgs[samp_i][step_i].copy()
img_w = np.sqrt(np.prod(ptch.shape))
ptch = ptch.reshape((img_w, img_w))
ptch -= vmin
ptch /= vmax-vmin
plt.imshow(ptch, interpolation='nearest', cmap=cm.Greys_r )
plt.axis('off')
# plt.tight_layout()
plt.savefig('poe_samples.pdf')
plt.close()