本文整理匯總了Python中matplotlib.cbook.is_scalar方法的典型用法代碼示例。如果您正苦於以下問題:Python cbook.is_scalar方法的具體用法?Python cbook.is_scalar怎麽用?Python cbook.is_scalar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.cbook
的用法示例。
在下文中一共展示了cbook.is_scalar方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: less_simple_linear_interpolation
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import is_scalar [as 別名]
def less_simple_linear_interpolation( x, y, xi, extrap=False ):
"""
This function provides simple (but somewhat less so than
:func:`cbook.simple_linear_interpolation`) linear interpolation.
:func:`simple_linear_interpolation` will give a list of point
between a start and an end, while this does true linear
interpolation at an arbitrary set of points.
This is very inefficient linear interpolation meant to be used
only for a small number of points in relatively non-intensive use
cases. For real linear interpolation, use scipy.
"""
if cbook.is_scalar(xi): xi = [xi]
x = np.asarray(x)
y = np.asarray(y)
xi = np.asarray(xi)
s = list(y.shape)
s[0] = len(xi)
yi = np.tile( np.nan, s )
for ii,xx in enumerate(xi):
bb = x == xx
if np.any(bb):
jj, = np.nonzero(bb)
yi[ii] = y[jj[0]]
elif xx<x[0]:
if extrap:
yi[ii] = y[0]
elif xx>x[-1]:
if extrap:
yi[ii] = y[-1]
else:
jj, = np.nonzero(x<xx)
jj = max(jj)
yi[ii] = y[jj] + (xx-x[jj])/(x[jj+1]-x[jj]) * (y[jj+1]-y[jj])
return yi
示例2: plot
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import is_scalar [as 別名]
def plot(self, xs, ys, *args, **kwargs):
'''
Plot 2D or 3D data.
========== ================================================
Argument Description
========== ================================================
*xs*, *ys* X, y coordinates of vertices
*zs* z value(s), either one for all points or one for
each point.
*zdir* Which direction to use as z ('x', 'y' or 'z')
when plotting a 2D set.
========== ================================================
Other arguments are passed on to
:func:`~matplotlib.axes.Axes.plot`
'''
# FIXME: This argument parsing might be better handled
# when we set later versions of python for
# minimum requirements. Currently at 2.4.
# Note that some of the reason for the current difficulty
# is caused by the fact that we want to insert a new
# (semi-optional) positional argument 'Z' right before
# many other traditional positional arguments occur
# such as the color, linestyle and/or marker.
had_data = self.has_data()
zs = kwargs.pop('zs', 0)
zdir = kwargs.pop('zdir', 'z')
argsi = 0
# First argument is array of zs
if len(args) > 0 and cbook.iterable(args[0]) and \
len(xs) == len(args[0]) :
# So, we know that it is an array with
# first dimension the same as xs.
# Next, check to see if the data contained
# therein (if any) is scalar (and not another array).
if len(args[0]) == 0 or cbook.is_scalar(args[0][0]) :
zs = args[argsi]
argsi += 1
# First argument is z value
elif len(args) > 0 and cbook.is_scalar(args[0]):
zs = args[argsi]
argsi += 1
# Match length
if not cbook.iterable(zs):
zs = np.ones(len(xs)) * zs
lines = Axes.plot(self, xs, ys, *args[argsi:], **kwargs)
for line in lines:
art3d.line_2d_to_3d(line, zs=zs, zdir=zdir)
self.auto_scale_xyz(xs, ys, zs, had_data)
return lines