當前位置: 首頁>>代碼示例>>Python>>正文


Python cbook.get_sample_data方法代碼示例

本文整理匯總了Python中matplotlib.cbook.get_sample_data方法的典型用法代碼示例。如果您正苦於以下問題:Python cbook.get_sample_data方法的具體用法?Python cbook.get_sample_data怎麽用?Python cbook.get_sample_data使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.cbook的用法示例。


在下文中一共展示了cbook.get_sample_data方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import get_sample_data [as 別名]
def main():
    # Test data
    x, y = np.mgrid[-5:5:0.05, -5:5:0.05]
    z = 5 * (np.sqrt(x**2 + y**2) + np.sin(x**2 + y**2))

    filename = get_sample_data('jacksboro_fault_dem.npz', asfileobj=False)
    with np.load(filename) as dem:
        elev = dem['elevation']

    fig = compare(z, plt.cm.copper)
    fig.suptitle('HSV Blending Looks Best with Smooth Surfaces', y=0.95)

    fig = compare(elev, plt.cm.gist_earth, ve=0.05)
    fig.suptitle('Overlay Blending Looks Best with Rough Surfaces', y=0.95)

    plt.show() 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:18,代碼來源:shading_example.py

示例2: test_light_source_topo_surface

# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import get_sample_data [as 別名]
def test_light_source_topo_surface():
    """Shades a DEM using different v.e.'s and blend modes."""
    fname = cbook.get_sample_data('jacksboro_fault_dem.npz', asfileobj=False)
    dem = np.load(fname)
    elev = dem['elevation']
    # Get the true cellsize in meters for accurate vertical exaggeration
    #   Convert from decimal degrees to meters
    dx, dy = dem['dx'], dem['dy']
    dx = 111320.0 * dx * np.cos(dem['ymin'])
    dy = 111320.0 * dy
    dem.close()

    ls = mcolors.LightSource(315, 45)
    cmap = cm.gist_earth

    fig, axes = plt.subplots(nrows=3, ncols=3)
    for row, mode in zip(axes, ['hsv', 'overlay', 'soft']):
        for ax, ve in zip(row, [0.1, 1, 10]):
            rgb = ls.shade(elev, cmap, vert_exag=ve, dx=dx, dy=dy,
                           blend_mode=mode)
            ax.imshow(rgb)
            ax.set(xticks=[], yticks=[]) 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:24,代碼來源:test_colors.py

示例3: __display__markings__

# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import get_sample_data [as 別名]
def __display__markings__(self, zooniverse_id):
        assert zooniverse_id in self.clusterResults
        subject = self.subject_collection.find_one({"zooniverse_id": zooniverse_id})
        zooniverse_id = subject["zooniverse_id"]
        print zooniverse_id
        url = subject["location"]["standard"]

        slash_index = url.rfind("/")
        object_id = url[slash_index+1:]

        if not(os.path.isfile(base_directory+"/Databases/"+self.project+"/images/"+object_id)):
            urllib.urlretrieve(url, base_directory+"/Databases/"+self.project+"/images/"+object_id)

        image_file = cbook.get_sample_data(base_directory+"/Databases/"+self.project+"/images/"+object_id)
        image = plt.imread(image_file)

        fig, ax = plt.subplots()
        im = ax.imshow(image)

        for (x, y), pts, users in zip(*self.clusterResults[zooniverse_id]):
            plt.plot([x, ], [y, ], 'o', color="red")


        plt.show()
        plt.close() 
開發者ID:zooniverse,項目名稱:aggregation,代碼行數:27,代碼來源:aggregation.py

示例4: __plot_image__

# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import get_sample_data [as 別名]
def __plot_image__(self,subject_id,axes):
        # TODO - still learning about Matplotlib and axes
        # see http://matplotlib.org/users/artists.html
        fname = self.__image_setup__(subject_id)

        exception = None
        for i in range(10):
            try:
                # fig = plt.figure()
                # ax = fig.add_subplot(1, 1, 1)
                image_file = cbook.get_sample_data(fname)
                image = plt.imread(image_file)
                # fig, ax = plt.subplots()
                im = axes.imshow(image)

                return self.__get_subject_dimension__(subject_id)
            except IOError as e:
                # try downloading that image again
                os.remove(fname)
                self.__image_setup__(subject_id)
                exception = e

        raise exception or Exception('Failed to plot image') 
開發者ID:zooniverse,項目名稱:aggregation,代碼行數:25,代碼來源:aggregation_api.py

示例5: get_demo_image

# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import get_sample_data [as 別名]
def get_demo_image():
    from matplotlib.cbook import get_sample_data
    import numpy as np
    f = get_sample_data("axes_grid/bivariate_normal.npy", asfileobj=False)
    z = np.load(f)
    # z is a numpy array of 15x15
    return z, (-3, 4, -4, 3) 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:9,代碼來源:inset_locator_demo2.py

示例6: get_demo_image

# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import get_sample_data [as 別名]
def get_demo_image():
    import numpy as np
    from matplotlib.cbook import get_sample_data
    f = get_sample_data("axes_grid/bivariate_normal.npy", asfileobj=False)
    z = np.load(f)
    # z is a numpy array of 15x15
    return z, (-3, 4, -4, 3) 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:9,代碼來源:demo_edge_colorbar.py

示例7: get_demo_image

# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import get_sample_data [as 別名]
def get_demo_image():
    from matplotlib.cbook import get_sample_data
    f = get_sample_data("axes_grid/bivariate_normal.npy", asfileobj=False)
    z = np.load(f)
    # z is a numpy array of 15x15
    return z, (-3, 4, -4, 3) 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:8,代碼來源:demo_axes_rgb.py

示例8: __display_image__

# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import get_sample_data [as 別名]
def __display_image__(self,subject_id,args_l,kwargs_l,block=True,title=None):
        """
        return the file names for all the images associated with a given subject_id
        also download them if necessary
        :param subject_id:
        :return:
        """
        subject = self.subject_collection.find_one({"zooniverse_id": subject_id})
        url = subject["location"]["standard"]

        slash_index = url.rfind("/")
        object_id = url[slash_index+1:]

        if not(os.path.isfile(self.base_directory+"/Databases/"+self.project+"/images/"+object_id)):
            urllib.urlretrieve(url, self.base_directory+"/Databases/"+self.project+"/images/"+object_id)

        fname = self.base_directory+"/Databases/"+self.project+"/images/"+object_id

        image_file = cbook.get_sample_data(fname)
        image = plt.imread(image_file)

        fig, ax = plt.subplots()
        im = ax.imshow(image,cmap = cm.Greys_r)

        for args,kwargs in zip(args_l,kwargs_l):
            print args,kwargs
            ax.plot(*args,**kwargs)

        if title is not None:
            ax.set_title(title)
        plt.show(block=block) 
開發者ID:zooniverse,項目名稱:aggregation,代碼行數:33,代碼來源:ouroboros_api.py

示例9: __display_image__

# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import get_sample_data [as 別名]
def __display_image__(self,zooniverse_id):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            fname = self.__get_image_fname__(zooniverse_id)

            image_file = cbook.get_sample_data(fname)
            image = plt.imread(image_file)

            fig, ax = plt.subplots()
            im = ax.imshow(image) 
開發者ID:zooniverse,項目名稱:aggregation,代碼行數:12,代碼來源:aggregation.py

示例10: __save_raw_markings__

# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import get_sample_data [as 別名]
def __save_raw_markings__(self,zooniverse_id):
        self.__display_image__(zooniverse_id)
        print "Num users: " + str(len(self.users_per_subject[zooniverse_id]))
        X,Y = zip(*self.markings_list[zooniverse_id])
        plt.plot(X,Y,'.')
        plt.xlim((0,1000))
        plt.ylim((563,0))
        plt.xticks([])
        plt.yticks([])
        plt.savefig(base_directory+"/Databases/"+self.project+"/examples/"+zooniverse_id+".pdf",bbox_inches='tight')
        plt.close()

    # def __display_image__(self,zooniverse_id):
    #     #assert zooniverse_id in self.clusterResults
    #     subject = self.subject_collection.find_one({"zooniverse_id": zooniverse_id})
    #     zooniverse_id = subject["zooniverse_id"]
    #     #print zooniverse_id
    #     url = subject["location"]["standard"]
    #
    #     slash_index = url.rfind("/")
    #     object_id = url[slash_index+1:]
    #
    #     if not(os.path.isfile(base_directory+"/Databases/"+self.project+"/images/"+object_id)):
    #         urllib.urlretrieve(url, base_directory+"/Databases/"+self.project+"/images/"+object_id)
    #
    #     image_file = cbook.get_sample_data(base_directory+"/Databases/"+self.project+"/images/"+object_id)
    #     image = plt.imread(image_file)
    #
    #     fig, ax = plt.subplots()
    #     im = ax.imshow(image)
    #     plt.xlim((0,1000))
    #     plt.ylim((563,0)) 
開發者ID:zooniverse,項目名稱:aggregation,代碼行數:34,代碼來源:aggregation.py

示例11: __plot__

# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import get_sample_data [as 別名]
def __plot__(self,fname):
        image_file = cbook.get_sample_data(fname)
        image = plt.imread(image_file)

        fig, ax1 = plt.subplots(1, 1)
        fig.set_size_inches(52,78)
        ax1.imshow(image)

        horiz_segments,vert_segments,horiz_intercepts,vert_intercepts = self.__get_grid_segments__()
        h_lines = self.__segments_to_grids__(horiz_segments,horiz_intercepts,horiz=True)
        v_lines = self.__segments_to_grids__(vert_segments,vert_intercepts,horiz=False)


        for (lb,ub) in h_lines:
            X,Y = zip(*lb)
            ax1.plot(X, Y,color="blue")
            X,Y = zip(*ub)
            ax1.plot(X, Y,color="blue")

        for (lb,ub) in v_lines:
            X,Y = zip(*lb)
            ax1.plot(X, Y,color="blue")
            X,Y = zip(*ub)
            ax1.plot(X, Y,color="blue")

        plt.savefig("/home/ggdhines/Databases/temp.jpg",bbox_inches='tight', pad_inches=0,dpi=72) 
開發者ID:zooniverse,項目名稱:aggregation,代碼行數:28,代碼來源:backup_weather.py

示例12: convex_hull

# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import get_sample_data [as 別名]
def convex_hull(points):
    """Computes the convex hull of a set of 2D points.

    Input: an iterable sequence of (x, y) pairs representing the points.
    Output: a list of vertices of the convex hull in counter-clockwise order,
      starting from the vertex with the lexicographically smallest coordinates.
    Implements Andrew's monotone chain algorithm. O(n log n) complexity.
    """

    # Sort the points lexicographically (tuples are compared lexicographically).
    # Remove duplicates to detect the case we have just one unique point.
    points = sorted(list(set(points)))

    # Boring case: no points or a single point, possibly repeated multiple times.
    if len(points) <= 1:
        return points

    # 2D cross product of OA and OB vectors, i.e. z-component of their 3D cross product.
    # Returns a positive value, if OAB makes a counter-clockwise turn,
    # negative for clockwise turn, and zero if the points are collinear.
    def cross(o, a, b):
        return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0])


    lower = []
    for p in points:
        while len(lower) >= 2 and cross(lower[-2], lower[-1], p) <= 0:
            lower.pop()
        lower.append(p)

    # Concatenation of the lower and upper hulls gives the convex hull.
    # Last point of each list is omitted because it is repeated at the beginning of the other list.
    return lower

# image_file = cbook.get_sample_data("/home/ggdhines/Databases/images/2fe9c6d0-4b1b-49a4-a96e-15e1cace73b8.jpeg") 
開發者ID:zooniverse,項目名稱:aggregation,代碼行數:37,代碼來源:whales.py

示例13: OnInit

# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import get_sample_data [as 別名]
def OnInit(self):
        xrcfile = cbook.get_sample_data('embedding_in_wx3.xrc',
                                        asfileobj=False)
        print('loading', xrcfile)

        self.res = xrc.XmlResource(xrcfile)

        # main frame and panel ---------

        self.frame = self.res.LoadFrame(None, "MainFrame")
        self.panel = xrc.XRCCTRL(self.frame, "MainPanel")

        # matplotlib panel -------------

        # container for matplotlib panel (I like to make a container
        # panel for our panel so I know where it'll go when in XRCed.)
        plot_container = xrc.XRCCTRL(self.frame, "plot_container_panel")
        sizer = wx.BoxSizer(wx.VERTICAL)

        # matplotlib panel itself
        self.plotpanel = PlotPanel(plot_container)
        self.plotpanel.init_plot_data()

        # wx boilerplate
        sizer.Add(self.plotpanel, 1, wx.EXPAND)
        plot_container.SetSizer(sizer)

        # whiz button ------------------
        whiz_button = xrc.XRCCTRL(self.frame, "whiz_button")
        whiz_button.Bind(wx.EVT_BUTTON, self.plotpanel.OnWhiz)

        # bang button ------------------
        bang_button = xrc.XRCCTRL(self.frame, "bang_button")
        bang_button.Bind(wx.EVT_BUTTON, self.OnBang)

        # final setup ------------------
        sizer = self.panel.GetSizer()
        self.frame.Show(1)

        self.SetTopWindow(self.frame)

        return True 
開發者ID:holzschu,項目名稱:python3_ios,代碼行數:44,代碼來源:embedding_in_wx3_sgskip.py

示例14: fit

# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import get_sample_data [as 別名]
def fit(self, markings,user_ids,jpeg_file=None,debug=False):
        #start by creating the initial "super" cluster
        end_clusters = []
        clusters_to_go = [(markings[:],user_ids[:],self.starting_epsilon),]
        total_noise = {}
        total_noise2 = []

        if jpeg_file is not None:
            image_file = cbook.get_sample_data(jpeg_file)
            image = plt.imread(image_file)
            fig, ax = plt.subplots()
            im = ax.imshow(image)

            x,y = zip(*markings)
            plt.plot(x,y,'o',color="green")
            plt.xlim(0,1000)
            plt.ylim(748,0)
            plt.show()

        while True:
            #if we have run out of clusters to process, break (hopefully done :) )
            if clusters_to_go == []:
                break
            m_,u_,e_ = clusters_to_go.pop(0)

            noise_found,final,to_split = self.binary_search_DBSCAN(m_,u_,e_,jpeg_file)
            #print to_split
            #print e_
            #print noise
            #print "=== " + str(noise_found)
            if noise_found != []:
                #print "==="

                for p,u in noise_found:
                    total_noise2.append(p)
                    assert(type(p) == tuple)
                    if not(u in total_noise):
                        total_noise[u] = [p]
                    else:
                        total_noise[u].append(p)
            #total_noise.extend(noise)
            end_clusters.extend(final[:])
            clusters_to_go.extend(to_split[:])

            #break

        cluster_centers = []
        for cluster in end_clusters:
            x,y = zip(*cluster)
            cluster_centers.append((np.mean(x),np.mean(y)))
        #print total_noise
        #print "===="

        if debug:
            return cluster_centers, end_clusters,total_noise2
        else:
            return cluster_centers 
開發者ID:zooniverse,項目名稱:aggregation,代碼行數:59,代碼來源:divisiveDBSCAN.py

示例15: graphviz_tree

# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import get_sample_data [as 別名]
def graphviz_tree(estimator, features, x, y):
    """
    繪製決策樹或者core基於樹的分類回歸算法的決策示意圖繪製,查看
    學習器本身hasattr(fiter, 'tree_')是否有tree_屬性,內部clone(estimator)學習器
    後再進行訓練操作,完成訓練後使用sklearn中tree.export_graphvizd導出graphviz.dot文件
    需要使用第三方dot工具將graphviz.dot進行轉換graphviz.png,即內部實行使用
    運行命令行:
                os.system("dot -T png graphviz.dot -o graphviz.png")
    最後讀取決策示意圖顯示

    :param estimator: 學習器對象,透傳learning_curve
    :param x: 訓練集x矩陣,numpy矩陣
    :param y: 訓練集y序列,numpy序列
    :param features: 訓練集x矩陣列特征所隊員的名稱,可迭代序列對象
    """
    if not hasattr(estimator, 'tree_'):
        logging.info('only tree can graphviz!')
        return

    # 所有執行fit的操作使用clone一個新的
    estimator = clone(estimator)
    estimator.fit(x, y)
    # TODO out_file path放倒cache中
    tree.export_graphviz(estimator.tree_, out_file='graphviz.dot', feature_names=features)
    os.system("dot -T png graphviz.dot -o graphviz.png")

    '''
        !open $path
        要是方便用notebook直接open其實顯示效果好,plt,show的大小不好調整
    '''
    graphviz = os.path.join(os.path.abspath('.'), 'graphviz.png')

    # path = graphviz
    # !open $path
    if not file_exist(graphviz):
        logging.info('{} not exist! please install dot util!'.format(graphviz))
        return

    image_file = cbook.get_sample_data(graphviz)
    image = plt.imread(image_file)
    image_file.close()
    plt.imshow(image)
    plt.axis('off')  # clear x- and y-axes
    plt.show() 
開發者ID:bbfamily,項目名稱:abu,代碼行數:46,代碼來源:ABuMLExecute.py


注:本文中的matplotlib.cbook.get_sample_data方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。