本文整理匯總了Python中matplotlib.cbook.CallbackRegistry方法的典型用法代碼示例。如果您正苦於以下問題:Python cbook.CallbackRegistry方法的具體用法?Python cbook.CallbackRegistry怎麽用?Python cbook.CallbackRegistry使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.cbook
的用法示例。
在下文中一共展示了cbook.CallbackRegistry方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import CallbackRegistry [as 別名]
def __init__(self, figure):
figure.set_canvas(self)
self.figure = figure
# a dictionary from event name to a dictionary that maps cid->func
self.callbacks = cbook.CallbackRegistry()
self.widgetlock = widgets.LockDraw()
self._button = None # the button pressed
self._key = None # the key pressed
self._lastx, self._lasty = None, None
self.button_pick_id = self.mpl_connect('button_press_event', self.pick)
self.scroll_pick_id = self.mpl_connect('scroll_event', self.pick)
self.mouse_grabber = None # the axes currently grabbing mouse
self.toolbar = None # NavigationToolbar2 will set me
self._is_saving = False
if False:
## highlight the artists that are hit
self.mpl_connect('motion_notify_event', self.onHilite)
## delete the artists that are clicked on
#self.mpl_disconnect(self.button_pick_id)
#self.mpl_connect('button_press_event',self.onRemove)
示例2: __init__
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import CallbackRegistry [as 別名]
def __init__(self, figure=None):
_log.warning('Treat the new Tool classes introduced in v1.5 as '
'experimental for now, the API will likely change in '
'version 2.1 and perhaps the rcParam as well')
self._key_press_handler_id = None
self._tools = {}
self._keys = {}
self._toggled = {}
self._callbacks = cbook.CallbackRegistry()
# to process keypress event
self.keypresslock = widgets.LockDraw()
self.messagelock = widgets.LockDraw()
self._figure = None
self.set_figure(figure)
示例3: cla
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import CallbackRegistry [as 別名]
def cla(self):
'clear the current axis'
self.label.set_text('') # self.set_label_text would change isDefault_
self._set_scale('linear')
# Clear the callback registry for this axis, or it may "leak"
self.callbacks = cbook.CallbackRegistry()
# whether the grids are on
self._gridOnMajor = (rcParams['axes.grid'] and
rcParams['axes.grid.which'] in ('both', 'major'))
self._gridOnMinor = (rcParams['axes.grid'] and
rcParams['axes.grid.which'] in ('both', 'minor'))
self.reset_ticks()
self.converter = None
self.units = None
self.set_units(None)
self.stale = True
示例4: __init__
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import CallbackRegistry [as 別名]
def __init__(self, figure=None):
warnings.warn('Treat the new Tool classes introduced in v1.5 as ' +
'experimental for now, the API will likely change in ' +
'version 2.1 and perhaps the rcParam as well')
self._key_press_handler_id = None
self._tools = {}
self._keys = {}
self._toggled = {}
self._callbacks = cbook.CallbackRegistry()
# to process keypress event
self.keypresslock = widgets.LockDraw()
self.messagelock = widgets.LockDraw()
self._figure = None
self.set_figure(figure)
示例5: set_registry
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import CallbackRegistry [as 別名]
def set_registry(self, registry=None):
'''
Arguments:
registry (ImageView, CallbackRegistry, or FigureCanvas):
The object that will generate the callback. If the argument is
an ImageView, the callback will be bound to the associated
FigureCanvas.
'''
from matplotlib.cbook import CallbackRegistry
if isinstance(registry, CallbackRegistry):
self.registry = registry
elif isinstance(registry, ImageView):
self.registry = registry.axes.figure.canvas
else:
self.registry = registry
示例6: cla
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import CallbackRegistry [as 別名]
def cla(self):
'clear the current axis'
self.set_major_locator(mticker.AutoLocator())
self.set_major_formatter(mticker.ScalarFormatter())
self.set_minor_locator(mticker.NullLocator())
self.set_minor_formatter(mticker.NullFormatter())
self.set_label_text('')
self._set_artist_props(self.label)
# Keep track of setting to the default value, this allows use to know
# if any of the following values is explicitly set by the user, so as
# to not overwrite their settings with any of our 'auto' settings.
self.isDefault_majloc = True
self.isDefault_minloc = True
self.isDefault_majfmt = True
self.isDefault_minfmt = True
self.isDefault_label = True
# Clear the callback registry for this axis, or it may "leak"
self.callbacks = cbook.CallbackRegistry()
# whether the grids are on
self._gridOnMajor = rcParams['axes.grid']
self._gridOnMinor = False
self.label.set_text('')
self._set_artist_props(self.label)
self.reset_ticks()
self.converter = None
self.units = None
self.set_units(None)
示例7: __init__
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import CallbackRegistry [as 別名]
def __init__(self, norm=None, cmap=None):
r"""
Parameters
----------
norm : :class:`matplotlib.colors.Normalize` instance
The normalizing object which scales data, typically into the
interval ``[0, 1]``.
cmap : str or :class:`~matplotlib.colors.Colormap` instance
The colormap used to map normalized data values to RGBA colors.
"""
self.callbacksSM = cbook.CallbackRegistry()
if cmap is None:
cmap = get_cmap()
if norm is None:
norm = colors.Normalize()
self._A = None
#: The Normalization instance of this ScalarMappable.
self.norm = norm
#: The Colormap instance of this ScalarMappable.
self.cmap = get_cmap(cmap)
#: The last colorbar associated with this ScalarMappable. May be None.
self.colorbar = None
self.update_dict = {'array': False}
示例8: clf
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import CallbackRegistry [as 別名]
def clf(self, keep_observers=False):
"""
Clear the figure.
Set *keep_observers* to True if, for example,
a gui widget is tracking the axes in the figure.
"""
self.suppressComposite = None
self.callbacks = cbook.CallbackRegistry()
for ax in tuple(self.axes): # Iterate over the copy.
ax.cla()
self.delaxes(ax) # removes ax from self._axstack
toolbar = getattr(self.canvas, 'toolbar', None)
if toolbar is not None:
toolbar.update()
self._axstack.clear()
self.artists = []
self.lines = []
self.patches = []
self.texts = []
self.images = []
self.legends = []
if not keep_observers:
self._axobservers = []
示例9: __init__
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import CallbackRegistry [as 別名]
def __init__(self, axes, pickradius=15):
"""
Parameters
----------
axes : `matplotlib.axes.Axes`
The `~.axes.Axes` to which the created Axis belongs.
pickradius : float
The acceptance radius for containment tests. See also
`.Axis.contains`.
"""
martist.Artist.__init__(self)
self._remove_overlapping_locs = True
self.set_figure(axes.figure)
self.isDefault_label = True
self.axes = axes
self.major = Ticker()
self.minor = Ticker()
self.callbacks = cbook.CallbackRegistry()
self._autolabelpos = True
self._smart_bounds = False
self.label = self._get_label()
self.labelpad = rcParams['axes.labelpad']
self.offsetText = self._get_offset_text()
self.pickradius = pickradius
# Initialize here for testing; later add API
self._major_tick_kw = dict()
self._minor_tick_kw = dict()
self.cla()
self._set_scale('linear')
# During initialization, Axis objects often create ticks that are later
# unused; this turns out to be a very slow step. Instead, use a custom
# descriptor to make the tick lists lazy and instantiate them as needed.
示例10: cla
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import CallbackRegistry [as 別名]
def cla(self):
'clear the current axis'
self.set_major_locator(mticker.AutoLocator())
self.set_major_formatter(mticker.ScalarFormatter())
self.set_minor_locator(mticker.NullLocator())
self.set_minor_formatter(mticker.NullFormatter())
self.set_label_text('')
self._set_artist_props(self.label)
# Keep track of setting to the default value, this allows use to know
# if any of the following values is explicitly set by the user, so as
# to not overwrite their settings with any of our 'auto' settings.
self.isDefault_majloc = True
self.isDefault_minloc = True
self.isDefault_majfmt = True
self.isDefault_minfmt = True
self.isDefault_label = True
# Clear the callback registry for this axis, or it may "leak"
self.callbacks = cbook.CallbackRegistry()
# whether the grids are on
self._gridOnMajor = rcParams['axes.grid'] and (rcParams['axes.grid.which'] in ('both','major'))
self._gridOnMinor = rcParams['axes.grid'] and (rcParams['axes.grid.which'] in ('both','minor'))
self.label.set_text('')
self._set_artist_props(self.label)
self.reset_ticks()
self.converter = None
self.units = None
self.set_units(None)
示例11: clf
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import CallbackRegistry [as 別名]
def clf(self, keep_observers=False):
"""
Clear the figure.
Set *keep_observers* to True if, for example,
a gui widget is tracking the axes in the figure.
"""
self.suppressComposite = None
self.callbacks = cbook.CallbackRegistry()
for ax in tuple(self.axes): # Iterate over the copy.
ax.cla()
self.delaxes(ax) # removes ax from self._axstack
toolbar = getattr(self.canvas, 'toolbar', None)
if toolbar is not None:
toolbar.update()
self._axstack.clear()
self.artists = []
self.lines = []
self.patches = []
self.texts = []
self.images = []
self.legends = []
if not keep_observers:
self._axobservers = []
self._suptitle = None
示例12: __init__
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import CallbackRegistry [as 別名]
def __init__(self, axes, pickradius=15):
"""
Init the axis with the parent Axes instance
"""
artist.Artist.__init__(self)
self.set_figure(axes.figure)
self.isDefault_label = True
self.axes = axes
self.major = Ticker()
self.minor = Ticker()
self.callbacks = cbook.CallbackRegistry()
self._autolabelpos = True
self._smart_bounds = False
self.label = self._get_label()
self.labelpad = rcParams['axes.labelpad']
self.offsetText = self._get_offset_text()
self.pickradius = pickradius
# Initialize here for testing; later add API
self._major_tick_kw = dict()
self._minor_tick_kw = dict()
self.cla()
self._set_scale('linear')
# During initialization, Axis objects often create ticks that are later
# unused; this turns out to be a very slow step. Instead, use a custom
# descriptor to make the tick lists lazy and instantiate them as needed.
示例13: __init__
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import CallbackRegistry [as 別名]
def __init__(self, norm=None, cmap=None):
r"""
Parameters
----------
norm : :class:`matplotlib.colors.Normalize` instance
The normalizing object which scales data, typically into the
interval ``[0, 1]``.
If *None*, *norm* defaults to a *colors.Normalize* object which
initializes its scaling based on the first data processed.
cmap : str or :class:`~matplotlib.colors.Colormap` instance
The colormap used to map normalized data values to RGBA colors.
"""
self.callbacksSM = cbook.CallbackRegistry()
if cmap is None:
cmap = get_cmap()
if norm is None:
norm = colors.Normalize()
self._A = None
#: The Normalization instance of this ScalarMappable.
self.norm = norm
#: The Colormap instance of this ScalarMappable.
self.cmap = get_cmap(cmap)
#: The last colorbar associated with this ScalarMappable. May be None.
self.colorbar = None
self.update_dict = {'array': False}
示例14: clf
# 需要導入模塊: from matplotlib import cbook [as 別名]
# 或者: from matplotlib.cbook import CallbackRegistry [as 別名]
def clf(self, keep_observers=False):
"""
Clear the figure.
Set *keep_observers* to True if, for example,
a gui widget is tracking the axes in the figure.
"""
self.suppressComposite = None
self.callbacks = cbook.CallbackRegistry()
for ax in tuple(self.axes): # Iterate over the copy.
ax.cla()
self.delaxes(ax) # removes ax from self._axstack
toolbar = getattr(self.canvas, 'toolbar', None)
if toolbar is not None:
toolbar.update()
self._axstack.clear()
self.artists = []
self.lines = []
self.patches = []
self.texts = []
self.images = []
self.legends = []
if not keep_observers:
self._axobservers = []
self._suptitle = None
if self.get_constrained_layout():
layoutbox.nonetree(self._layoutbox)
self.stale = True