當前位置: 首頁>>代碼示例>>Python>>正文


Python backend_agg.FigureCanvasAgg方法代碼示例

本文整理匯總了Python中matplotlib.backends.backend_agg.FigureCanvasAgg方法的典型用法代碼示例。如果您正苦於以下問題:Python backend_agg.FigureCanvasAgg方法的具體用法?Python backend_agg.FigureCanvasAgg怎麽用?Python backend_agg.FigureCanvasAgg使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在matplotlib.backends.backend_agg的用法示例。


在下文中一共展示了backend_agg.FigureCanvasAgg方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: FigureToSummary

# 需要導入模塊: from matplotlib.backends import backend_agg [as 別名]
# 或者: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 別名]
def FigureToSummary(name, fig):
  """Create tf.Summary proto from matplotlib.figure.Figure.

  Args:
    name: Summary name.
    fig: A matplotlib figure object.

  Returns:
    A `tf.Summary` proto containing the figure rendered to an image.
  """
  canvas = backend_agg.FigureCanvasAgg(fig)
  fig.canvas.draw()
  ncols, nrows = fig.canvas.get_width_height()
  png_file = six.BytesIO()
  canvas.print_figure(png_file)
  png_str = png_file.getvalue()
  return tf.Summary(value=[
      tf.Summary.Value(
          tag='%s/image' % name,
          image=tf.Summary.Image(
              height=nrows,
              width=ncols,
              colorspace=3,
              encoded_image_string=png_str))
  ]) 
開發者ID:tensorflow,項目名稱:lingvo,代碼行數:27,代碼來源:plot.py

示例2: get_renderer

# 需要導入模塊: from matplotlib.backends import backend_agg [as 別名]
# 或者: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 別名]
def get_renderer(fig):
    if fig._cachedRenderer:
        renderer = fig._cachedRenderer
    else:
        canvas = fig.canvas

        if canvas and hasattr(canvas, "get_renderer"):
            renderer = canvas.get_renderer()
        else:
            # not sure if this can happen
            warnings.warn("tight_layout : falling back to Agg renderer")
            from matplotlib.backends.backend_agg import FigureCanvasAgg
            canvas = FigureCanvasAgg(fig)
            renderer = canvas.get_renderer()

    return renderer 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:18,代碼來源:tight_layout.py

示例3: __init__

# 需要導入模塊: from matplotlib.backends import backend_agg [as 別名]
# 或者: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 別名]
def __init__(self, *args, **kwargs):
        backend_agg.FigureCanvasAgg.__init__(self, *args, **kwargs)

        # A buffer to hold the PNG data for the last frame.  This is
        # retained so it can be resent to each client without
        # regenerating it.
        self._png_buffer = io.BytesIO()

        # Set to True when the renderer contains data that is newer
        # than the PNG buffer.
        self._png_is_old = True

        # Set to True by the `refresh` message so that the next frame
        # sent to the clients will be a full frame.
        self._force_full = True

        # Set to True when a drawing is in progress to prevent redraw
        # messages from piling up.
        self._pending_draw = None 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:21,代碼來源:backend_webagg.py

示例4: get_renderer

# 需要導入模塊: from matplotlib.backends import backend_agg [as 別名]
# 或者: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 別名]
def get_renderer(fig):
    if fig._cachedRenderer:
        renderer = fig._cachedRenderer
    else:
        canvas = fig.canvas

        if canvas and hasattr(canvas, "get_renderer"):
            renderer = canvas.get_renderer()
        else:
            # not sure if this can happen
            cbook._warn_external("tight_layout : falling back to Agg renderer")
            from matplotlib.backends.backend_agg import FigureCanvasAgg
            canvas = FigureCanvasAgg(fig)
            renderer = canvas.get_renderer()

    return renderer 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:tight_layout.py

示例5: __init__

# 需要導入模塊: from matplotlib.backends import backend_agg [as 別名]
# 或者: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 別名]
def __init__(self, *args, **kwargs):
        backend_agg.FigureCanvasAgg.__init__(self, *args, **kwargs)

        # Set to True when the renderer contains data that is newer
        # than the PNG buffer.
        self._png_is_old = True

        # Set to True by the `refresh` message so that the next frame
        # sent to the clients will be a full frame.
        self._force_full = True

        # Store the current image mode so that at any point, clients can
        # request the information. This should be changed by calling
        # self.set_image_mode(mode) so that the notification can be given
        # to the connected clients.
        self._current_image_mode = 'full'

        # Store the DPI ratio of the browser.  This is the scaling that
        # occurs automatically for all images on a HiDPI display.
        self._dpi_ratio = 1 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:backend_webagg_core.py

示例6: run

# 需要導入模塊: from matplotlib.backends import backend_agg [as 別名]
# 或者: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 別名]
def run(self, fig):
        """
        Run the exporter on the given figure

        Parmeters
        ---------
        fig : matplotlib.Figure instance
            The figure to export
        """
        # Calling savefig executes the draw() command, putting elements
        # in the correct place.
        if fig.canvas is None:
            canvas = FigureCanvasAgg(fig)
        fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi)
        if self.close_mpl:
            import matplotlib.pyplot as plt
            plt.close(fig)
        self.crawl_fig(fig) 
開發者ID:mpld3,項目名稱:mplexporter,代碼行數:20,代碼來源:exporter.py

示例7: __init__

# 需要導入模塊: from matplotlib.backends import backend_agg [as 別名]
# 或者: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 別名]
def __init__(self, *args, **kwargs):
        backend_agg.FigureCanvasAgg.__init__(self, *args, **kwargs)

        # A buffer to hold the PNG data for the last frame.  This is
        # retained so it can be resent to each client without
        # regenerating it.
        self._png_buffer = io.BytesIO()

        # Set to True when the renderer contains data that is newer
        # than the PNG buffer.
        self._png_is_old = True

        # Set to True by the `refresh` message so that the next frame
        # sent to the clients will be a full frame.
        self._force_full = True

        # Store the current image mode so that at any point, clients can
        # request the information. This should be changed by calling
        # self.set_image_mode(mode) so that the notification can be given
        # to the connected clients.
        self._current_image_mode = 'full' 
開發者ID:miloharper,項目名稱:neural-network-animation,代碼行數:23,代碼來源:backend_webagg_core.py

示例8: get_renderer

# 需要導入模塊: from matplotlib.backends import backend_agg [as 別名]
# 或者: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 別名]
def get_renderer(fig):
    if fig._cachedRenderer:
        renderer = fig._cachedRenderer
    else:
        canvas = fig.canvas
        if canvas and hasattr(canvas, "get_renderer"):
            renderer = canvas.get_renderer()
        else:
            # not sure if this can happen
            # seems to with PDF...
            _log.info("constrained_layout : falling back to Agg renderer")
            from matplotlib.backends.backend_agg import FigureCanvasAgg
            canvas = FigureCanvasAgg(fig)
            renderer = canvas.get_renderer()

    return renderer 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:18,代碼來源:_layoutbox.py

示例9: plot_buf

# 需要導入模塊: from matplotlib.backends import backend_agg [as 別名]
# 或者: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 別名]
def plot_buf(y):
    def _plot_buf(y):
        from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
        from matplotlib.figure import Figure
        import io
        fig = Figure(figsize=(3, 3))
        canvas = FigureCanvas(fig)
        ax = fig.add_subplot(111)
        ax.plot(y)
        ax.grid(axis='y')
        fig.tight_layout(pad=0)

        buf = io.BytesIO()
        fig.savefig(buf, format='png')
        buf.seek(0)
        return buf.getvalue()

    s = tf.py_func(_plot_buf, [y], tf.string)
    return s 
開發者ID:alexlee-gk,項目名稱:video_prediction,代碼行數:21,代碼來源:tf_utils.py

示例10: plot_generated_images

# 需要導入模塊: from matplotlib.backends import backend_agg [as 別名]
# 或者: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 別名]
def plot_generated_images(images, fname):
  """Save a synthetic image as a PNG file.

  Args:
    images: samples of synthetic images generated by the generative network.
    fname: Python `str`, filename to save the plot to.
  """
  fig = figure.Figure(figsize=(4, 4))
  canvas = backend_agg.FigureCanvasAgg(fig)

  for i, image in enumerate(images):
    ax = fig.add_subplot(4, 4, i + 1)
    ax.axis('off')
    ax.set_xticklabels([])
    ax.set_yticklabels([])
    ax.imshow(image.reshape(IMAGE_SHAPE[:-1]), cmap='Greys_r')

  fig.tight_layout()
  fig.subplots_adjust(wspace=0.05, hspace=0.05)
  canvas.print_figure(fname, format='png') 
開發者ID:GoogleCloudPlatform,項目名稱:ml-on-gcp,代碼行數:22,代碼來源:generative_adversarial_network.py

示例11: save_imgs

# 需要導入模塊: from matplotlib.backends import backend_agg [as 別名]
# 或者: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 別名]
def save_imgs(x, fname):
  """Helper method to save a grid of images to a PNG file.

  Args:
    x: A numpy array of shape [n_images, height, width].
    fname: The filename to write to (including extension).
  """
  n = x.shape[0]
  fig = figure.Figure(figsize=(n, 1), frameon=False)
  canvas = backend_agg.FigureCanvasAgg(fig)
  for i in range(n):
    ax = fig.add_subplot(1, n, i+1)
    ax.imshow(x[i].squeeze(),
              interpolation="none",
              cmap=cm.get_cmap("binary"))
    ax.axis("off")
  canvas.print_figure(fname, format="png")
  print("saved %s" % fname) 
開發者ID:GoogleCloudPlatform,項目名稱:ml-on-gcp,代碼行數:20,代碼來源:vq_vae.py

示例12: plot_dsc

# 需要導入模塊: from matplotlib.backends import backend_agg [as 別名]
# 或者: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 別名]
def plot_dsc(dsc_dist):
    y_positions = np.arange(len(dsc_dist))
    dsc_dist = sorted(dsc_dist.items(), key=lambda x: x[1])
    values = [x[1] for x in dsc_dist]
    labels = [x[0] for x in dsc_dist]
    labels = ["_".join(l.split("_")[1:-1]) for l in labels]
    fig = plt.figure(figsize=(12, 8))
    canvas = FigureCanvasAgg(fig)
    plt.barh(y_positions, values, align="center", color="skyblue")
    plt.yticks(y_positions, labels)
    plt.xticks(np.arange(0.0, 1.0, 0.1))
    plt.xlim([0.0, 1.0])
    plt.gca().axvline(np.mean(values), color="tomato", linewidth=2)
    plt.gca().axvline(np.median(values), color="forestgreen", linewidth=2)
    plt.xlabel("Dice coefficient", fontsize="x-large")
    plt.gca().xaxis.grid(color="silver", alpha=0.5, linestyle="--", linewidth=1)
    plt.tight_layout()
    canvas.draw()
    plt.close()
    s, (width, height) = canvas.print_to_buffer()
    return np.fromstring(s, np.uint8).reshape((height, width, 4)) 
開發者ID:mateuszbuda,項目名稱:brain-segmentation-pytorch,代碼行數:23,代碼來源:inference.py

示例13: redraw

# 需要導入模塊: from matplotlib.backends import backend_agg [as 別名]
# 或者: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 別名]
def redraw(self):

        self.figure = spc(data=self.data) + rules()
        for chart in self.layer:
            self.figure + chart()
        self.figure.make(figsize=(8, 6))

        canv = FigureCanvasAgg(self.figure.fig)
        buf = BytesIO()
        canv.print_figure(buf, format='png')
        with self._buflock:
            if self._buf is not None:
                self._buf.close()
            self._buf = buf

        i = int(time.time() * 1e6)
        self.attributes['src'] = "/%s/get_image_data?update_index=%d" % (id(self), i)

        super(MatplotImage, self).redraw() 
開發者ID:carlosqsilva,項目名稱:pyspc,代碼行數:21,代碼來源:pyspc_remi.py

示例14: create_visualization_context

# 需要導入模塊: from matplotlib.backends import backend_agg [as 別名]
# 或者: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 別名]
def create_visualization_context(self, image_bgr: Image):
        import matplotlib.pyplot as plt
        from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas

        context = {}
        context["image_bgr"] = image_bgr
        dpi = 100
        height_inches = float(image_bgr.shape[0]) / dpi
        width_inches = float(image_bgr.shape[1]) / dpi
        fig = plt.figure(figsize=(width_inches, height_inches), dpi=dpi)
        plt.axes([0, 0, 1, 1])
        plt.axis("off")
        context["fig"] = fig
        canvas = FigureCanvas(fig)
        context["canvas"] = canvas
        extent = (0, image_bgr.shape[1], image_bgr.shape[0], 0)
        plt.imshow(image_bgr[:, :, ::-1], extent=extent)
        return context 
開發者ID:facebookresearch,項目名稱:detectron2,代碼行數:20,代碼來源:densepose.py

示例15: figure_to_image

# 需要導入模塊: from matplotlib.backends import backend_agg [as 別名]
# 或者: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 別名]
def figure_to_image(figure, close=True):
    """Render matplotlib figure to numpy format.

    Returns:
        numpy.array: image in [CHW] order
    """
    if not np:
        logger.warning(NUMPY_ERROR_MESSAGE)

    try:
        import matplotlib.pyplot as plt
        import matplotlib.backends.backend_agg as plt_backend_agg
    except ImportError:
        logger.warning(MATPLOTLIB_ERROR_MESSAGE)

    canvas = plt_backend_agg.FigureCanvasAgg(figure)
    canvas.draw()
    data = np.frombuffer(canvas.buffer_rgba(), dtype=np.uint8)
    w, h = figure.canvas.get_width_height()
    image_hwc = data.reshape([h, w, 4])[:, :, 0:3]
    image_chw = np.moveaxis(image_hwc, source=2, destination=0)
    if close:
        plt.close(figure)
    return image_chw 
開發者ID:polyaxon,項目名稱:polyaxon,代碼行數:26,代碼來源:events_processors.py


注:本文中的matplotlib.backends.backend_agg.FigureCanvasAgg方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。