本文整理匯總了Python中matplotlib.animation.writers方法的典型用法代碼示例。如果您正苦於以下問題:Python animation.writers方法的具體用法?Python animation.writers怎麽用?Python animation.writers使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.animation
的用法示例。
在下文中一共展示了animation.writers方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: save_frames
# 需要導入模塊: from matplotlib import animation [as 別名]
# 或者: from matplotlib.animation import writers [as 別名]
def save_frames(images, filename):
num_sequences, n_steps, w, h = images.shape
fig = plt.figure()
im = plt.imshow(combine_multiple_img(images[:, 0]), cmap=plt.cm.get_cmap('Greys'), interpolation='none')
plt.axis('image')
def updatefig(*args):
im.set_array(combine_multiple_img(images[:, args[0]]))
return im,
ani = animation.FuncAnimation(fig, updatefig, interval=500, frames=n_steps)
# Either avconv or ffmpeg need to be installed in the system to produce the videos!
try:
writer = animation.writers['avconv']
except KeyError:
writer = animation.writers['ffmpeg']
writer = writer(fps=3)
ani.save(filename, writer=writer)
plt.close(fig)
示例2: make_video
# 需要導入模塊: from matplotlib import animation [as 別名]
# 或者: from matplotlib.animation import writers [as 別名]
def make_video(xy,filename):
FFMpegWriter = manimation.writers['ffmpeg']
metadata = dict(title='Movie Test', artist='Matplotlib',
comment='Movie support!')
writer = FFMpegWriter(fps=15, metadata=metadata)
mydpi=100;
#fig = plt.figure(figsize=(128/mydpi,128/mydpi))
fig = plt.figure(figsize=(32/mydpi,32/mydpi))
plt.xlim(-200, 200)
plt.ylim(-200, 200)
fig_num=len(xy);
#color=['ro','bo','go','ko','yo','mo','co'];
color=['r','b','g','k','y','m','c'];
with writer.saving(fig, filename, len(xy)):
for i in range(len(xy)):
for j in range(len(xy[0])):
#plt.plot(xy[i,j,1],xy[i,j,0],color[j%len(color)]);
plt.scatter(xy[i,j,1],xy[i,j,0],c=color[j%len(color)],s=0.5);
writer.grab_frame();
示例3: make_video
# 需要導入模塊: from matplotlib import animation [as 別名]
# 或者: from matplotlib.animation import writers [as 別名]
def make_video(xy,filename):
os.system("rm -rf pics/*");
FFMpegWriter = manimation.writers['ffmpeg']
metadata = dict(title='Movie Test', artist='Matplotlib',
comment='Movie support!')
writer = FFMpegWriter(fps=15, metadata=metadata)
fig = plt.figure()
plt.xlim(-200, 200)
plt.ylim(-200, 200)
fig_num=len(xy);
color=['ro','bo','go','ko','yo','mo','co'];
with writer.saving(fig, filename, len(xy)):
for i in range(len(xy)):
for j in range(len(xy[0])):
plt.plot(xy[i,j,1],xy[i,j,0],color[j%len(color)]);
writer.grab_frame();
示例4: save_true_generated_frames
# 需要導入模塊: from matplotlib import animation [as 別名]
# 或者: from matplotlib.animation import writers [as 別名]
def save_true_generated_frames(true, generated, filename):
num_sequences, n_steps, w, h = true.shape
# Background is 0, foreground as 1
true = np.copy(true[:16])
true[true > 0.1] = 1
# Set foreground be near 0.5
generated = generated * .5
# Background is 1, foreground is near 0.5
generated = 1 - generated[:16, :n_steps]
# Subtract true from generated so background is 1, true foreground is 0,
# and generated foreground is around 0.5
images = generated - true
# images[images > 0.5] = 1.
fig = plt.figure()
im = plt.imshow(combine_multiple_img(images[:, 0]), cmap=plt.cm.get_cmap('gist_heat'),
interpolation='none', vmin=0, vmax=1)
plt.axis('image')
def updatefig(*args):
im.set_array(combine_multiple_img(images[:, args[0]]))
return im,
ani = animation.FuncAnimation(fig, updatefig, interval=500, frames=n_steps)
try:
writer = animation.writers['avconv']
except KeyError:
writer = animation.writers['ffmpeg']
writer = writer(fps=3)
ani.save(filename, writer=writer)
plt.close(fig)
示例5: movie
# 需要導入模塊: from matplotlib import animation [as 別名]
# 或者: from matplotlib.animation import writers [as 別名]
def movie(im_List, out='movie.mp4', fps=10, dpi=120):
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import matplotlib.animation as animation
fig = plt.figure()
frame = im_List[0].imvec #read_auto(filelist[len(filelist)/2])
fov = im_List[0].psize*im_List[0].xdim
extent = fov * np.array((1,-1,-1,1)) / 2.
maxi = np.max(frame)
im = plt.imshow( np.reshape(frame,[im_List[0].xdim, im_List[0].xdim]) , cmap='hot', extent=extent) #inferno
plt.colorbar()
im.set_clim([0,maxi])
fig.set_size_inches([5,5])
plt.tight_layout()
def update_img(n):
sys.stdout.write('\rprocessing image %i of %i ...' % (n,len(im_List)) )
sys.stdout.flush()
im.set_data(np.reshape(im_List[n].imvec, [im_List[n].xdim, im_List[n].xdim]) )
return im
ani = animation.FuncAnimation(fig,update_img,len(im_List),interval=1e3/fps)
writer = animation.writers['ffmpeg'](fps=max(20, fps), bitrate=1e6)
ani.save(out,writer=writer,dpi=dpi)
示例6: save_video
# 需要導入模塊: from matplotlib import animation [as 別名]
# 或者: from matplotlib.animation import writers [as 別名]
def save_video(self):
FFMpegWriter = manimation.writers['ffmpeg']
options = dict(title='Movie', artist='Matplotlib')
writer = FFMpegWriter(fps=5, options=options, bitrate=3000)
with writer.saving(self.f, "movie.mp4", 100):
self.curr_pos = 0
self.update_graphs()
self.f.canvas.draw()
plt.draw()
for i in range(10):
writer.grab_frame()
for i in range(self.num_iters):
self.curr_pos = i
self.update_graphs()
self.f.canvas.draw()
plt.draw()
writer.grab_frame()
self.curr_pos = self.num_iters
self.update_graphs()
self.f.canvas.draw()
plt.draw()
for i in range(20):
writer.grab_frame()
示例7: generate_writer
# 需要導入模塊: from matplotlib import animation [as 別名]
# 或者: from matplotlib.animation import writers [as 別名]
def generate_writer():
FFMpegWriter = animation.writers['ffmpeg']
writer = FFMpegWriter(fps=parameters.frames_per_second, metadata=parameters.metadata)
fig = pyplot.figure()
fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=None, hspace=None)
pyplot.xlim(0, parameters.width)
pyplot.ylim(0, parameters.height)
axis = pyplot.gca()
axis.set_axis_bgcolor('black')
axis.axes.get_xaxis().set_visible(False)
axis.axes.get_yaxis().set_visible(False)
rcParams['font.size'] = 12
rcParams['text.color'] = 'white'
return fig, writer
示例8: savemp4_per_img
# 需要導入模塊: from matplotlib import animation [as 別名]
# 或者: from matplotlib.animation import writers [as 別名]
def savemp4_per_img(self, img, lafs_dict, fname):
fig, ax = plt.subplots()
fig.set_tight_layout(True)
ax.imshow(255 - img.squeeze())
lines_dict = {}
for d_idx in range(len(self.names_list)):
N = self.names_list[d_idx];
C = self.colors[d_idx];
num_frames = len(lafs_dict[N])
lines_dict[N], ax = visualize_LAFs_on_fig(ax, lafs_dict[N][0], C)
ax.legend(self.names_list)
def visualize_LAFs_on_fig_mod(laf_dict, line_dict, dname, i):
work_LAFs = convertLAFs_to_A23format(laf_dict[dname][i])
ells = []
for jj in range(len(work_LAFs)):
ell = LAF2pts(work_LAFs[jj,:,:])
line_dict[dname][str(i)].set_data(ell[:,0], ell[:,1])
return line_dict[dname],ax
def update_LAF(i):
for d_idx in range(len(self.names_list)):
N = self.names_list[d_idx];
C = self.colors[d_idx];
lines_dict[N],ax = visualize_LAFs_on_fig_mod(lafs_dict, lines_dict, N, i)
return lines_dict[N], ax
ax.legend(self.names_list)
anim = FuncAnimation(fig, update_LAF, frames=np.arange(0, num_frames), interval=75)
import matplotlib.animation as animation
Writer = animation.writers['ffmpeg']
writer = Writer(fps=24, metadata=dict(artist='Me'), bitrate=1800)
anim.save(fname, dpi=96, writer=writer)#'imagemagick')
return
示例9: savemp4_per_desc
# 需要導入模塊: from matplotlib import animation [as 別名]
# 或者: from matplotlib.animation import writers [as 別名]
def savemp4_per_desc(self, fname):
if not os.path.isdir(self.loss_name):
os.makedirs(self.loss_name)
img = self.img1
for d_idx in range(len(self.names_list)):
fig, ax = plt.subplots()
fig.set_tight_layout(True)
ax.imshow(255 - img.squeeze())
lines_dict = {}
N = self.names_list[d_idx];
C = self.colors[d_idx];
lafs_dict = {"1": self.out_lafs1[N], "2": self.out_lafs2[N]}
num_frames = len(lafs_dict["1"])
lines_dict['1'], ax = visualize_LAFs_on_fig(ax, lafs_dict["1"][0], 'r')
lines_dict['2'], ax = visualize_LAFs_on_fig(ax, lafs_dict["2"][0], 'b')
ax.legend(['img1', 'img2'])
def visualize_LAFs_on_fig_mod(laf_dict, line_dict, dname, i):
work_LAFs = convertLAFs_to_A23format(laf_dict[dname][i])
for jj in range(len(work_LAFs)):
ell = LAF2pts(work_LAFs[jj,:,:])
line_dict[dname][str(jj)].set_data(ell[:,0], ell[:,1])
return line_dict[dname],ax
def update_LAF(i):
lines_dict["1"],ax = visualize_LAFs_on_fig_mod(lafs_dict, lines_dict, "1", i)
lines_dict["2"],ax = visualize_LAFs_on_fig_mod(lafs_dict, lines_dict, "2", i)
return lines_dict["1"], ax
anim = FuncAnimation(fig, update_LAF, frames=np.arange(0, num_frames), interval=75)
Writer = animation.writers['ffmpeg']
writer = Writer(fps=24, metadata=dict(artist='Me'), bitrate=900)
anim.save(os.path.join(self.loss_name, N + "_" + fname), dpi=72, writer=writer)
return
示例10: coalescence_video
# 需要導入模塊: from matplotlib import animation [as 別名]
# 或者: from matplotlib.animation import writers [as 別名]
def coalescence_video(self, file_str):
"""
Generate a video over the marginal window showing the coalescence map
and expected arrival times overlain on the station traces.
Parameters
----------
file_str : str
String {run_name}_{event_name}
"""
# Find index of start and end of marginal window
idx0 = np.where(self.times == self.event_mw_data["DT"].iloc[0])[0][0]
idx1 = np.where(self.times == self.event_mw_data["DT"].iloc[-1])[0][0]
Writer = animation.writers["ffmpeg"]
writer = Writer(fps=4, metadata=dict(artist="Ulvetanna"), bitrate=1800)
fig = self._coalescence_frame(idx0)
ani = animation.FuncAnimation(fig, self._video_update,
frames=np.linspace(idx0+1, idx1, 200),
blit=False, repeat=False)
subdir = "videos"
util.make_directories(self.run_path, subdir=subdir)
out_str = self.run_path / subdir / file_str
ani.save("{}_CoalescenceVideo.mp4".format(out_str),
writer=writer)
示例11: save_traj
# 需要導入模塊: from matplotlib import animation [as 別名]
# 或者: from matplotlib.animation import writers [as 別名]
def save_traj(images, image_goal, gif_path, task):
# save trajectory as gif file
fig, aa = plt.subplots(1, 2)
m1 = aa[0].matshow(
images[0], cmap=plt.cm.gray, vmin=0., vmax=1.)
aa[0].set_title('Time step 0')
aa[0].set_yticklabels([])
aa[0].set_xticklabels([])
m2 = aa[1].matshow(
image_goal, cmap=plt.cm.gray, vmin=0., vmax=1.)
aa[1].set_title('goal')
aa[1].set_yticklabels([])
aa[1].set_xticklabels([])
fig.tight_layout()
def updatemat2(t):
m1.set_data(images[t])
aa[0].set_title('Time step ' + str(t))
m2.set_data(image_goal)
return m1, m2
frames = len(images)
if task == 'plane':
fps = 2
else:
fps = 20
anim = FuncAnimation(
fig, updatemat2, frames=frames, interval=200, blit=True, repeat=True)
Writer = writers['imagemagick'] # animation.writers.avail
writer = Writer(fps=fps, metadata=dict(artist='Me'), bitrate=1800)
anim.save(gif_path, writer=writer)
示例12: animate
# 需要導入模塊: from matplotlib import animation [as 別名]
# 或者: from matplotlib.animation import writers [as 別名]
def animate(path_to_file, H, problem=None, func_iter=None, plot_min=None, plot_max=None):
if H.ndim != 3 or H.shape[2] != 2:
print("Can only animate a two dimensional set of arrays.")
return
fig = plt.figure()
ax = plt.gca()
# plot the pareto front if it is known for the problem
if problem is not None:
pf = problem.pareto_front()
plt.scatter(pf[:, 0], pf[:, 1], label='Pareto Front', s=60, facecolors='none', edgecolors='r')
# plot the initial population
_F = H[0, :, :]
scat = plt.scatter(_F[:, 0], _F[:, 1])
plt.title("0")
if func_iter is not None:
func_iter(ax, H[0])
# the update method
def update(n):
_F = H[n, :, :]
scat.set_offsets(_F)
# get the bounds for plotting and add padding
min = np.min(_F, axis=0) - 0.1
max = np.max(_F, axis=0) + 0.1
# set the scatter object with padding
ax.set_xlim(min[0], max[0])
ax.set_ylim(min[1], max[1])
if func_iter is not None:
func_iter(ax, H[n])
plt.title(n)
# create the animation
ani = animation.FuncAnimation(fig, update, frames=H.shape[0])
# write the file
Writer = animation.writers['ffmpeg']
writer = Writer(fps=6, bitrate=1800)
ani.save(path_to_file, writer=writer)
print("Saving: ", path_to_file)
示例13: collect_data
# 需要導入模塊: from matplotlib import animation [as 別名]
# 或者: from matplotlib.animation import writers [as 別名]
def collect_data(num_traj,save_dir,animate=False,**kwargs):
transition_noise = kwargs['transition_noise'] if 'transition_noise' in kwargs.keys() else 0.05
location_noise = kwargs['location_noise'] if 'location_noise' in kwargs.keys() else 0.2
env = NavEnv(location_noise,transition_noise)
dataset = {'states':[],'actions':[],'gt_onsets':[],'tasks':[],'params':kwargs}
train_sketches = [[0,1,3],[1,2,3],[3,2,1],[2,3,0],[1,2,0],[1,0,2],[1,3,2],[0,3,2],[1,2,3],[3,2,0],[2,1,3],[1,3,0]]
if animate:
fig = plt.figure()
ims = []
for i in range(num_traj):
g_state,r_state = env.reset()
colours = ['b', 'r', 'g', 'y', 'k']
# randomly sample integets that constitute the sketch
sketch = train_sketches[np.random.randint(0,len(train_sketches),1)[0]]
curr_idx = 0
curr_subtask = sketch[curr_idx]
sketch_traj = []
# begin trajectory
traj_states = []
traj_actions = []
while True:
sketch_traj.append(curr_subtask) # This gives us ground truth about the task executed at each timestep
#all_pos = np.array([agent_pos,red_pos,green_pos,yel_pos,black_pos])
#state = np.ravel(get_state(all_pos[0],all_pos[1:],type = 'rel'))
traj_states.append(r_state)
action = get_action(g_state,curr_subtask)
g_state,r_state,done = env.step(action,curr_subtask)
traj_actions.append(action)
if animate:
ims.append((plt.scatter(g_state[:, 0], g_state[:, 1], c=colours),))
if done:
if curr_idx<len(sketch)-1:
curr_idx+=1
curr_subtask = sketch[curr_idx]
else:
dataset['states'].append(traj_states)
dataset['actions'].append(traj_actions)
dataset['gt_onsets'].append(sketch_traj)
dataset['tasks'].append(sketch)
break
save_dir = save_dir if save_dir[-2:] == '.p' else save_dir+'.p'
pickle.dump(dataset,open(save_dir,'wb'))
if animate:
print('WRITING')
Writer = animation.writers['ffmpeg']
writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800)
im_ani = animation.ArtistAnimation(fig, ims, interval=50, repeat_delay=3000,
blit=True)
im_ani.save(save_dir+'im_mod.mp4', writer=writer)
示例14: evaluate_model
# 需要導入模塊: from matplotlib import animation [as 別名]
# 或者: from matplotlib.animation import writers [as 別名]
def evaluate_model(nb_traj,policy,save_dir= None,animate=False,**kwargs):
transition_noise = kwargs['transition_noise'] if 'transition_noise' in kwargs.keys() else 0.02
location_noise = kwargs['location_noise'] if 'location_noise' in kwargs.keys() else 0.1
env = NavEnv(location_noise, transition_noise,done_thresh=0.03)
if kwargs['zero_shot']:
test_sketches = [[0, 1, 3,0], [3, 2, 3,2], [0, 2, 1,0], [1, 3, 0,2], [1, 3, 0,3], [1, 3, 2,1], [1, 3, 2,3], [2, 3, 2,1], [1, 2, 3,1],
[3, 1, 0,1], [3, 1, 2,0], [2, 3, 0,1],[1,3,1,3],[2,3,2,3],[1,2,1,2],[0,1,0,1],[0,2,0,2],[0,3,0,3]]
else:
test_sketches = [[0, 1, 3], [1, 2, 3], [3, 2, 1], [2, 3, 0], [1, 2, 0], [1, 0, 2], [1, 3, 2], [0, 3, 2],
[1, 2, 3], [3, 2, 0], [2, 1, 3], [1, 3, 0]]
score = []
if animate:
fig = plt.figure()
ims = []
for i in range(nb_traj):
task_score = []
g_state,r_state = env.reset()
colours = ['b', 'r', 'g', 'y', 'k']
# randomly sample integets that constitute the sketch
sketch = test_sketches[np.random.randint(0,len(test_sketches),1)[0]]
curr_idx = 0
curr_subtask = sketch[curr_idx]
counter=0
while True:
action,stop = policy.forward_full([[r_state]], curr_subtask, dropout=1.)
g_state,r_state,done = env.step(action,curr_subtask)
if stop == 1 or counter >100:
if done:
task_score.append(1)
else:
task_score.append(0)
if curr_idx < len(sketch) - 1:
curr_idx += 1
curr_subtask = sketch[curr_idx]
counter = 0
else:
score.append(task_score)
break
if animate:
ims.append((plt.scatter(g_state[:, 0], g_state[:, 1], c=colours),))
counter+=1
if animate:
print('writing video at:',save_dir+'im_mod.mp4')
Writer = animation.writers['ffmpeg']
writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800)
im_ani = animation.ArtistAnimation(fig, ims, interval=50, repeat_delay=3000,
blit=True)
im_ani.save(save_dir+'im_mod.mp4', writer=writer)
acc = 0
for s in score:
if np.sum(sum(s)) == len(s):
acc+=1
acc /=float(len(score))
# also returns accuracy so you dont calculate it outside
return score,acc
示例15: create_movie
# 需要導入模塊: from matplotlib import animation [as 別名]
# 或者: from matplotlib.animation import writers [as 別名]
def create_movie(data, fname='demo.mp4', dpi=100, cmap='jet',
clim=None, fig_size=(6, 8), fps=20, data_power=1, angle=None, runid=None):
"""
Transfer 3d array into a movie.
Parameters
----------
data : 3d array
data shape is [num_sequences, num_row, num_col]
fname : string, optional
name to save movie
dpi : int, optional
resolution of the movie
cmap : string, optional
color format
clim : list, tuple, optional
[low, high] value to define plotting range
fig_size : list, tuple, optional
size (horizontal size, vertical size) of each plot
fps : int, optional
frame per second
"""
fig, ax = plt.subplots()
ax.set_aspect('equal')
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
im = ax.imshow(np.zeros([data.shape[1], data.shape[2]]),
cmap=cmap, interpolation='nearest')
fig.set_size_inches(fig_size)
fig.tight_layout()
def update_img(n):
tmp = data[n, :, :]
im.set_data(tmp**data_power)
if clim is not None:
im.set_clim(clim)
else:
im.set_clim([0, np.max(data[n, :, :])])
figname = ''
if runid is not None:
figname = 'runid: {} '.format(runid[n])
if angle is not None:
figname += 'angle: {}'.format(angle[n])
# if len(figname) != 0:
# im.ax.set_title(figname)
return im
# legend(loc=0)
ani = animation.FuncAnimation(fig, update_img, data.shape[0], interval=30)
writer = animation.writers['ffmpeg'](fps=fps)
ani.save(fname, writer=writer, dpi=dpi)