當前位置: 首頁>>代碼示例>>Python>>正文


Python math.sqrt方法代碼示例

本文整理匯總了Python中math.sqrt方法的典型用法代碼示例。如果您正苦於以下問題:Python math.sqrt方法的具體用法?Python math.sqrt怎麽用?Python math.sqrt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在math的用法示例。


在下文中一共展示了math.sqrt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: swirl

# 需要導入模塊: import math [as 別名]
# 或者: from math import sqrt [as 別名]
def swirl(x, y, step):
    x -= (u_width / 2)
    y -= (u_height / 2)
    dist = math.sqrt(pow(x, 2) + pow(y, 2)) / 2.0
    angle = (step / 10.0) + (dist * 1.5)
    s = math.sin(angle)
    c = math.cos(angle)
    xs = x * c - y * s
    ys = x * s + y * c
    r = abs(xs + ys)
    r = r * 12.0
    r -= 20
    return (r, r + (s * 130), r + (c * 130))


# roto-zooming checker board 
開發者ID:pimoroni,項目名稱:unicorn-hat-hd,代碼行數:18,代碼來源:demo.py

示例2: __init__

# 需要導入模塊: import math [as 別名]
# 或者: from math import sqrt [as 別名]
def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(MyResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        # note the increasing dilation
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilation=1)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)

        # these layers will not be used
        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
開發者ID:aleju,項目名稱:cat-bbs,代碼行數:27,代碼來源:model.py

示例3: _compute_dE

# 需要導入模塊: import math [as 別名]
# 或者: from math import sqrt [as 別名]
def _compute_dE(self, pos=None, lengths=None, weights=None, m=None):
        dEx = 0
        dEy = 0
        d2Ex2 = 0
        d2Ey2 = 0
        d2Exy = 0
        d2Eyx = 0
        for i in pos:
            if i != m:
                xmi = pos[m][0] - pos[i][0]
                ymi = pos[m][1] - pos[i][1]
                xmi2 = xmi * xmi
                ymi2 = ymi * ymi
                xmi_ymi2 = xmi2 + ymi2
                lmi = lengths[m][i]
                kmi = weights[m][i] / (lmi * lmi)
                dEx += kmi * (xmi - (lmi * xmi) / math.sqrt(xmi_ymi2))
                dEy += kmi * (ymi - (lmi * ymi) / math.sqrt(xmi_ymi2))
                d2Ex2 += kmi * (1 - (lmi * ymi2) / math.pow(xmi_ymi2, 1.5))
                d2Ey2 += kmi * (1 - (lmi * xmi2) / math.pow(xmi_ymi2, 1.5))
                res = kmi * (lmi * xmi * ymi) / math.pow(xmi_ymi2, 1.5)
                d2Exy += res
                d2Eyx += res
        return dEx, dEy, d2Ex2, d2Ey2, d2Exy, d2Eyx 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:26,代碼來源:graph_layout.py

示例4: __init__

# 需要導入模塊: import math [as 別名]
# 或者: from math import sqrt [as 別名]
def __init__(self, block, layers, num_classes=1000):
    self.inplanes = 64
    super(ResNet, self).__init__()
    self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                 bias=False)
    self.bn1 = nn.BatchNorm2d(64)
    self.relu = nn.ReLU(inplace=True)
    # maxpool different from pytorch-resnet, to match tf-faster-rcnn
    self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    self.layer1 = self._make_layer(block, 64, layers[0])
    self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
    self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
    # use stride 1 for the last conv4 layer (same as tf-faster-rcnn)
    self.layer4 = self._make_layer(block, 512, layers[3], stride=1)

    for m in self.modules():
      if isinstance(m, nn.Conv2d):
        n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
      elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_() 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:24,代碼來源:resnet_v1.py

示例5: _attn

# 需要導入模塊: import math [as 別名]
# 或者: from math import sqrt [as 別名]
def _attn(self, q, k, v, sequence_mask):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))

        b_subset = self.b[:, :, :w.size(-2), :w.size(-1)]

        if sequence_mask is not None:
            b_subset = b_subset * sequence_mask.view(
                sequence_mask.size(0), 1, -1)
            b_subset = b_subset.permute(1, 0, 2, 3)

        w = w * b_subset + -1e9 * (1 - b_subset)
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
        return torch.matmul(w, v) 
開發者ID:atcbosselut,項目名稱:comet-commonsense,代碼行數:18,代碼來源:gpt.py

示例6: __call__

# 需要導入模塊: import math [as 別名]
# 或者: from math import sqrt [as 別名]
def __call__(self, video):
    for attempt in range(10):
      area = video.shape[-3]*video.shape[-2]
      target_area = random.uniform(0.08, 1.0)*area
      aspect_ratio = random.uniform(3./4, 4./3)

      w = int(round(math.sqrt(target_area*aspect_ratio)))
      h = int(round(math.sqrt(target_area/aspect_ratio)))

      if random.random() < 0.5:
        w, h = h, w

      if w <= video.shape[-2] and h <= video.shape[-3]:
        x1 = random.randint(0, video.shape[-2]-w)
        y1 = random.randint(0, video.shape[-3]-h)

        video = video[..., y1:y1+h, x1:x1+w, :]

        return resize(video, (self.size, self.size), self.interpolation)

    # Fallback
    scale = Scale(self.size, interpolation=self.interpolation)
    crop = CenterCrop(self.size)
    return crop(scale(video)) 
開發者ID:jthsieh,項目名稱:DDPAE-video-prediction,代碼行數:26,代碼來源:video_transforms.py

示例7: genCubeVector

# 需要導入模塊: import math [as 別名]
# 或者: from math import sqrt [as 別名]
def genCubeVector(x, y, z, x_mult=1, y_mult=1, z_mult=1):
    """Generates a map of vector lengths from the center point to each coordinate

    x - width of matrix to generate
    y - height of matrix to generate
    z - depth of matrix to generate
    x_mult - value to scale x-axis by
    y_mult - value to scale y-axis by
    z_mult - value to scale z-axis by
    """
    cX = (x - 1) / 2.0
    cY = (y - 1) / 2.0
    cZ = (z - 1) / 2.0

    def vect(_x, _y, _z):
        return int(math.sqrt(math.pow(_x - cX, 2 * x_mult) +
                             math.pow(_y - cY, 2 * y_mult) +
                             math.pow(_z - cZ, 2 * z_mult)))

    return [[[vect(_x, _y, _z) for _z in range(z)] for _y in range(y)] for _x in range(x)] 
開發者ID:ManiacalLabs,項目名稱:BiblioPixelAnimations,代碼行數:22,代碼來源:bloom.py

示例8: distance

# 需要導入模塊: import math [as 別名]
# 或者: from math import sqrt [as 別名]
def distance(origin, destination):
	"""Determine distance between 2 sets of [lat,lon] in km"""

	lat1, lon1 = origin
	lat2, lon2 = destination
	radius = 6371  # km

	dlat = math.radians(lat2 - lat1)
	dlon = math.radians(lon2 - lon1)
	a = (math.sin(dlat / 2) * math.sin(dlat / 2) +
		 math.cos(math.radians(lat1)) *
		 math.cos(math.radians(lat2)) * math.sin(dlon / 2) *
		 math.sin(dlon / 2))
	c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
	d = radius * c

	return d 
開發者ID:NatanaelAntonioli,項目名稱:L.E.S.M.A,代碼行數:19,代碼來源:L.E.S.M.A. - Fabrica de Noobs Speedtest.py

示例9: __init__

# 需要導入模塊: import math [as 別名]
# 或者: from math import sqrt [as 別名]
def __init__(self, block, layers, in_channels=3):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
開發者ID:toodef,項目名稱:neural-pipeline,代碼行數:22,代碼來源:albunet.py

示例10: __init__

# 需要導入模塊: import math [as 別名]
# 或者: from math import sqrt [as 別名]
def __init__(self, interval, stat_func=None, pattern='.*', sort=False):
        if stat_func is None:
            def asum_stat(x):
                """returns |x|/size(x), async execution."""
                return ndarray.norm(x)/sqrt(x.size)
            stat_func = asum_stat
        self.stat_func = stat_func
        self.interval = interval
        self.activated = False
        self.queue = []
        self.step = 0
        self.exes = []
        self.re_prog = re.compile(pattern)
        self.sort = sort
        def stat_helper(name, array):
            """wrapper for executor callback"""
            array = ctypes.cast(array, NDArrayHandle)
            array = NDArray(array, writable=False)
            if not self.activated or not self.re_prog.match(py_str(name)):
                return
            self.queue.append((self.step, py_str(name), self.stat_func(array)))
        self.stat_helper = stat_helper 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:24,代碼來源:monitor.py

示例11: matthewscc

# 需要導入模塊: import math [as 別名]
# 或者: from math import sqrt [as 別名]
def matthewscc(self):
        """
        Calculate the Matthew's Correlation Coefficent
        """
        if not self.total_examples:
            return 0.

        true_pos = float(self.true_positives)
        false_pos = float(self.false_positives)
        false_neg = float(self.false_negatives)
        true_neg = float(self.true_negatives)
        terms = [(true_pos + false_pos),
                 (true_pos + false_neg),
                 (true_neg + false_pos),
                 (true_neg + false_neg)]
        denom = 1.
        for t in filter(lambda t: t != 0., terms):
            denom *= t
        return ((true_pos * true_neg) - (false_pos * false_neg)) / math.sqrt(denom) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:21,代碼來源:metric.py

示例12: set_verbosity

# 需要導入模塊: import math [as 別名]
# 或者: from math import sqrt [as 別名]
def set_verbosity(self, verbose=False, print_func=None):
        """Switch on/off verbose mode

        Parameters
        ----------
        verbose : bool
            switch on/off verbose mode
        print_func : function
            A function that computes statistics of initialized arrays.
            Takes an `NDArray` and returns an `str`. Defaults to mean
            absolute value str((|x|/size(x)).asscalar()).
        """
        self._verbose = verbose
        if print_func is None:
            def asum_stat(x):
                """returns |x|/size(x), async execution."""
                return str((ndarray.norm(x)/sqrt(x.size)).asscalar())
            print_func = asum_stat
        self._print_func = print_func
        return self 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:22,代碼來源:initializer.py

示例13: _init_weight

# 需要導入模塊: import math [as 別名]
# 或者: from math import sqrt [as 別名]
def _init_weight(self, name, arr):
        shape = arr.shape
        hw_scale = 1.
        if len(shape) < 2:
            raise ValueError('Xavier initializer cannot be applied to vector {0}. It requires at'
                             ' least 2D.'.format(name))
        if len(shape) > 2:
            hw_scale = np.prod(shape[2:])
        fan_in, fan_out = shape[1] * hw_scale, shape[0] * hw_scale
        factor = 1.
        if self.factor_type == "avg":
            factor = (fan_in + fan_out) / 2.0
        elif self.factor_type == "in":
            factor = fan_in
        elif self.factor_type == "out":
            factor = fan_out
        else:
            raise ValueError("Incorrect factor type")
        scale = np.sqrt(self.magnitude / factor)
        if self.rnd_type == "uniform":
            random.uniform(-scale, scale, out=arr)
        elif self.rnd_type == "gaussian":
            random.normal(0, scale, out=arr)
        else:
            raise ValueError("Unknown random type") 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:27,代碼來源:initializer.py

示例14: _get_lbmult

# 需要導入模塊: import math [as 別名]
# 或者: from math import sqrt [as 別名]
def _get_lbmult(self, nup):
        """Returns lr scaling factor for large batch according to warmup schedule
        (to be implemented)
        """
        nwup = self.warmup_epochs * self.updates_per_epoch
        strategy = self.warmup_strategy
        maxmult = float(self.batch_scale)
        if nup >= nwup:
            mult = maxmult
        elif nwup <= 1:
            mult = 1.0
        else:
            if (strategy == 'linear'):
                mult = 1.0 + (maxmult - 1) * nup / nwup
            elif (strategy == 'power2'):
                mult = 1.0 + (maxmult-1) * (nup*nup)/(nwup*nwup)
            elif (strategy == 'sqrt'):
                mult = 1.0 + (maxmult - 1) * math.sqrt(float(nup) / nwup)
            else:
                mult = 1.0
        return mult 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:23,代碼來源:optimizer.py

示例15: update

# 需要導入模塊: import math [as 別名]
# 或者: from math import sqrt [as 別名]
def update(self, index, weight, grad, state):
        assert(isinstance(weight, NDArray))
        assert(isinstance(grad, NDArray))
        self._update_count(index)
        lr = self._get_lr(index)
        wd = self._get_wd(index)

        is_sparse = grad.stype == 'row_sparse'
        history = state

        if is_sparse:
            kwargs = {'epsilon': self.float_stable_eps,
                      'rescale_grad': self.rescale_grad}
            if self.clip_gradient:
                kwargs['clip_gradient'] = self.clip_gradient
            sparse.adagrad_update(weight, grad, history, out=weight, lr=lr, wd=wd, **kwargs)
        else:
            grad = grad * self.rescale_grad
            if self.clip_gradient is not None:
                grad = clip(grad, -self.clip_gradient, self.clip_gradient)
            history[:] += square(grad)
            div = grad / sqrt(history + self.float_stable_eps)
            weight[:] += (div + weight * wd) * -lr 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:25,代碼來源:optimizer.py


注:本文中的math.sqrt方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。