當前位置: 首頁>>代碼示例>>Python>>正文


Python math.log2方法代碼示例

本文整理匯總了Python中math.log2方法的典型用法代碼示例。如果您正苦於以下問題:Python math.log2方法的具體用法?Python math.log2怎麽用?Python math.log2使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在math的用法示例。


在下文中一共展示了math.log2方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train

# 需要導入模塊: import math [as 別名]
# 或者: from math import log2 [as 別名]
def train(src, tgt, train_config, savedir, databin):
    # expect to have 'hyperparameters', 'src', 'tgt', 'databin' in train_config
    os.makedirs(savedir, exist_ok=True)

    logpath = os.path.join(savedir, 'train.log')
    checkpoint = os.path.join(savedir, 'checkpoint_best.pt')

    if check_last_line(logpath, 'done') and os.path.exists(checkpoint):
        print(f"Training is finished. Best checkpoint: {checkpoint}")
        return

    cuda_visible_devices = list(range(torch.cuda.device_count()))
    num_visible_gpu = len(cuda_visible_devices)
    num_gpu = min(train_config['gpu'], 2**int(math.log2(num_visible_gpu)))
    cuda_devices_clause = f"CUDA_VISIBLE_DEVICES={','.join([str(i) for i in cuda_visible_devices[:num_gpu]])}"
    update_freq = train_config['gpu'] / num_gpu
    call(f"""{cuda_devices_clause} fairseq-train {databin} \
        --source-lang {src} --target-lang {tgt} \
        --save-dir {savedir} \
        --update-freq {update_freq} \
        {" ".join(train_config['parameters'])} \
        | tee {logpath}
    """, shell=True) 
開發者ID:facebookresearch,項目名稱:flores,代碼行數:25,代碼來源:train.py

示例2: get_NDCG

# 需要導入模塊: import math [as 別名]
# 或者: from math import log2 [as 別名]
def get_NDCG(groundtruth, pred_rank_list, k):
    count = 0
    dcg = 0
    for pred in pred_rank_list:
        if count >= k:
            break
        if groundtruth[pred] == 1:
            dcg += (1) / math.log2(count + 1 + 1)
        count += 1
    idcg = 0
    num_real_item = np.sum(groundtruth)
    num_item = int(min(num_real_item, k))
    for i in range(num_item):
        idcg += (1) / math.log2(i + 1 + 1)
    ndcg = dcg / idcg
    return ndcg 
開發者ID:HaojiHu,項目名稱:Sets2Sets,代碼行數:18,代碼來源:Sets2Sets.py

示例3: _accept_transition

# 需要導入模塊: import math [as 別名]
# 或者: from math import log2 [as 別名]
def _accept_transition(self, state, transition):
        """

        :param SimState state:
        :param tuple transition:
        :return:
        """

        t = self._get_transition_dict(state)

        if t[transition] == 0:
            _l.error("Impossible: Transition %s has 0 occurrences.", transition)
            return True

        n = math.log2(t[transition])
        if n.is_integer():
            return True
        return False 
開發者ID:angr,項目名稱:angr,代碼行數:20,代碼來源:bucketizer.py

示例4: _ail_handle_Convert

# 需要導入模塊: import math [as 別名]
# 或者: from math import log2 [as 別名]
def _ail_handle_Convert(self, expr):
        if expr.from_bits == 128 and expr.to_bits == 64:
            operand_expr = self._expr(expr.operand)
            if isinstance(operand_expr, Expr.BinaryOp) \
                    and operand_expr.op == 'Mul' \
                    and isinstance(operand_expr.operands[1], Expr.Const) \
                    and isinstance(operand_expr.operands[0], Expr.BinaryOp):
                if operand_expr.operands[0].op in {'Shr', 'DivMod'} \
                        and isinstance(operand_expr.operands[0].operands[1], Expr.Const):
                    if operand_expr.operands[0].op == 'Shr':
                        Y = operand_expr.operands[0].operands[1].value
                    else:
                        Y = int(math.log2(operand_expr.operands[0].operands[1].value))
                    C = operand_expr.operands[1].value
                    divisor = self._check_divisor(pow(2, 64+Y), C)
                    if divisor:
                        X = operand_expr.operands[0].operands[0]
                        new_const = Expr.Const(expr.idx, None, divisor, 64)
                        return Expr.BinaryOp(expr.idx, 'DivMod', [X, new_const], expr.signed, **expr.tags)

        return super()._ail_handle_Convert(expr) 
開發者ID:angr,項目名稱:angr,代碼行數:23,代碼來源:div_simplifier.py

示例5: __init__

# 需要導入模塊: import math [as 別名]
# 或者: from math import log2 [as 別名]
def __init__(self,imageSize):
        super(_Encoder, self).__init__()
        
        n = math.log2(imageSize)
        
        assert n==round(n),'imageSize must be a power of 2'
        assert n>=3,'imageSize must be at least 8'
        n=int(n)


        self.conv1 = nn.Conv2d(ngf * 2**(n-3), nz, 4)
        self.conv2 = nn.Conv2d(ngf * 2**(n-3), nz, 4)

        self.encoder = nn.Sequential()
        # input is (nc) x 64 x 64
        self.encoder.add_module('input-conv',nn.Conv2d(nc, ngf, 4, 2, 1, bias=False))
        self.encoder.add_module('input-relu',nn.LeakyReLU(0.2, inplace=True))
        for i in range(n-3):
            # state size. (ngf) x 32 x 32
            self.encoder.add_module('pyramid.{0}-{1}.conv'.format(ngf*2**i, ngf * 2**(i+1)), nn.Conv2d(ngf*2**(i), ngf * 2**(i+1), 4, 2, 1, bias=False))
            self.encoder.add_module('pyramid.{0}.batchnorm'.format(ngf * 2**(i+1)), nn.BatchNorm2d(ngf * 2**(i+1)))
            self.encoder.add_module('pyramid.{0}.relu'.format(ngf * 2**(i+1)), nn.LeakyReLU(0.2, inplace=True))

        # state size. (ngf*8) x 4 x 4 
開發者ID:seangal,項目名稱:dcgan_vae_pytorch,代碼行數:26,代碼來源:main.py

示例6: __init__

# 需要導入模塊: import math [as 別名]
# 或者: from math import log2 [as 別名]
def __init__(self, angle_list, rot_axis):
        self.rot_axes = rot_axis
        # Check if angle_list has type "list"
        if not isinstance(angle_list, list):
            raise QiskitError('The angles are not provided in a list.')
        # Check if the angles in angle_list are real numbers
        for angle in angle_list:
            try:
                float(angle)
            except TypeError:
                raise QiskitError(
                    'An angle cannot be converted to type float (real angles are expected).')
        num_contr = math.log2(len(angle_list))
        if num_contr < 0 or not num_contr.is_integer():
            raise QiskitError(
                'The number of controlled rotation gates is not a non-negative power of 2.')
        if rot_axis not in ('X', 'Y', 'Z'):
            raise QiskitError('Rotation axis is not supported.')
        # Create new gate.
        num_qubits = int(num_contr) + 1
        super().__init__('ucr' + rot_axis.lower(), num_qubits, angle_list) 
開發者ID:Qiskit,項目名稱:qiskit-terra,代碼行數:23,代碼來源:uc_pauli_rot.py

示例7: __init__

# 需要導入模塊: import math [as 別名]
# 或者: from math import log2 [as 別名]
def __init__(self, diag):
        """Check types"""
        # Check if diag has type "list"
        if not isinstance(diag, list):
            raise QiskitError("The diagonal entries are not provided in a list.")
        # Check if the right number of diagonal entries is provided and if the diagonal entries
        # have absolute value one.
        num_action_qubits = math.log2(len(diag))
        if num_action_qubits < 1 or not num_action_qubits.is_integer():
            raise QiskitError("The number of diagonal entries is not a positive power of 2.")
        for z in diag:
            try:
                complex(z)
            except TypeError:
                raise QiskitError("Not all of the diagonal entries can be converted to "
                                  "complex numbers.")
            if not np.abs(z) - 1 < _EPS:
                raise QiskitError("A diagonal entry has not absolute value one.")
        # Create new gate.
        super().__init__("diagonal", int(num_action_qubits), diag) 
開發者ID:Qiskit,項目名稱:qiskit-terra,代碼行數:22,代碼來源:diagonal.py

示例8: _dec_diag

# 需要導入模塊: import math [as 別名]
# 或者: from math import log2 [as 別名]
def _dec_diag(self):
        """
        Call to create a circuit implementing the diagonal gate.
        """
        q = QuantumRegister(self.num_qubits)
        circuit = QuantumCircuit(q)
        # Since the diagonal is a unitary, all its entries have absolute value one and the diagonal
        # is fully specified by the phases of its entries
        diag_phases = [cmath.phase(z) for z in self.params]
        n = len(self.params)
        while n >= 2:
            angles_rz = []
            for i in range(0, n, 2):
                diag_phases[i // 2], rz_angle = _extract_rz(diag_phases[i], diag_phases[i + 1])
                angles_rz.append(rz_angle)
            num_act_qubits = int(np.log2(n))
            contr_qubits = q[self.num_qubits - num_act_qubits + 1:self.num_qubits]
            target_qubit = q[self.num_qubits - num_act_qubits]
            circuit.ucrz(angles_rz, contr_qubits, target_qubit)
            n //= 2
        return circuit


# extract a Rz rotation (angle given by first output) such that exp(j*phase)*Rz(z_angle)
# is equal to the diagonal matrix with entires exp(1j*ph1) and exp(1j*ph2) 
開發者ID:Qiskit,項目名稱:qiskit-terra,代碼行數:27,代碼來源:diagonal.py

示例9: get_batch_sizes

# 需要導入模塊: import math [as 別名]
# 或者: from math import log2 [as 別名]
def get_batch_sizes(max_batch_size):
    # Returns powers of 2, up to and including max_batch_size
    max_exponent = math.log2(max_batch_size)
    for i in range(int(max_exponent)+1):
        batch_size = 2**i
        yield batch_size
    
    if max_batch_size != batch_size:
        yield max_batch_size


# TODO: This only covers dynamic shape for batch size, not dynamic shape for other dimensions 
開發者ID:rmccorm4,項目名稱:tensorrt-utils,代碼行數:14,代碼來源:onnx_to_tensorrt.py

示例10: avanzar

# 需要導入模塊: import math [as 別名]
# 或者: from math import log2 [as 別名]
def avanzar(self):
        return super(tractor, self).avanzar(funcion_rendimiento=math.log2) 
開發者ID:PythonClassRoom,項目名稱:PythonClassBook,代碼行數:4,代碼來源:carrera.py

示例11: isPowerOfFour

# 需要導入模塊: import math [as 別名]
# 或者: from math import log2 [as 別名]
def isPowerOfFour(self, n: int) -> bool:
        return n > 0 and n == (4 ** (math.log2(n) // 2)) 
開發者ID:amitrajitbose,項目名稱:Competitive_Programming,代碼行數:4,代碼來源:PowerOfFour.py

示例12: minXor

# 需要導入模塊: import math [as 別名]
# 或者: from math import log2 [as 別名]
def minXor(arr):
    m = 2**31
    maxbits = floor(log2(max(arr))) + 1
    trie = Trie()
    trie.insert(arr[0], maxbits)
    arr.pop(0)
    for i in arr:
        m = min(m, trie.xorUtil(i, maxbits))
        trie.insert(i, maxbits)
    return m 
開發者ID:amitrajitbose,項目名稱:Competitive_Programming,代碼行數:12,代碼來源:MinXorPair.py

示例13: findMaximumXOR

# 需要導入模塊: import math [as 別名]
# 或者: from math import log2 [as 別名]
def findMaximumXOR(self, nums: List[int]) -> int:
        try:
            maxbit = floor(log2(max(nums))) + 1
        except:
            maxbit = 0
        head = TrieNode()
        for n in nums:
            head = insert(head, n, maxbit)
        
        maxXor = -float('inf')
        for n in nums:
            currXor = 0
            curr = head
            for i in range(maxbit - 1, -1, -1):
                bit = (n>>i) & 1
                # if bit is set, try to unset it to get max pair
                if bit:
                    if curr.left:
                        currXor += 2**i
                        curr = curr.left
                    else:
                        curr = curr.right
                else:
                    if curr.right:
                        currXor += 2**i
                        curr = curr.right
                    else:
                        curr = curr.left
            maxXor = max(maxXor, currXor)
        return maxXor 
開發者ID:amitrajitbose,項目名稱:Competitive_Programming,代碼行數:32,代碼來源:MaxXorPair.py

示例14: entropy

# 需要導入模塊: import math [as 別名]
# 或者: from math import log2 [as 別名]
def entropy(self):
        """
        :returns: entropy (in bits) of this distribution
        """
        return sum([-p*math.log2(p) for p in dict.values(self)]) 
開發者ID:pynadath,項目名稱:psychsim,代碼行數:7,代碼來源:probability.py

示例15: __init__

# 需要導入模塊: import math [as 別名]
# 或者: from math import log2 [as 別名]
def __init__(self, latent_dim=20, num_filters=64, num_channels=3, image_size=128, activation_type='relu', args=None):
        super(ConvEncNet, self).__init__()
        self.args = args
        if activation_type == 'relu':
            self.activation = nn.ReLU(inplace=True)
        elif activation_type == 'tanh':
            self.activation = nn.Tanh(inplace=True)
        else:
            print("Activation Type not supported")
            return

        self.conv_hidden = []
        self.conv1 = nn.Conv2d(num_channels, num_filters, 4, 2, 1, bias=True)

        num_layers = math.log2(image_size)
        assert num_layers == round(num_layers), 'Image size that are power of 2 are supported.'
        num_layers = int(num_layers)

        for i in np.arange(num_layers - 3):
            self.conv_hidden.append(nn.Conv2d(num_filters * 2 ** i, num_filters * 2 ** (i + 1), 4, 2, 1, bias=True))
            self.conv_hidden.append(nn.BatchNorm2d(num_filters * 2 ** (i + 1)))
            self.conv_hidden.append(self.activation)

        self.features = nn.Sequential(*self.conv_hidden)
        self.conv_mu = nn.Conv2d(num_filters * 2 ** (num_layers - 3), latent_dim, 4)
        self.conv_var = nn.Conv2d(num_filters * 2 ** (num_layers - 3), latent_dim, 4)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') 
開發者ID:IBM,項目名稱:AIX360,代碼行數:37,代碼來源:train_tutorial_dermatology_models.py


注:本文中的math.log2方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。