當前位置: 首頁>>代碼示例>>Python>>正文


Python math.log方法代碼示例

本文整理匯總了Python中math.log方法的典型用法代碼示例。如果您正苦於以下問題:Python math.log方法的具體用法?Python math.log怎麽用?Python math.log使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在math的用法示例。


在下文中一共展示了math.log方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: entropy

# 需要導入模塊: import math [as 別名]
# 或者: from math import log [as 別名]
def entropy(self, subset, attr, value, base=False):
        """
        Calculate the entropy of the given attribute/value pair from the
        given subset.

        Args:
            subset: the subset with which to calculate entropy.
            attr: the attribute of the value.
            value: the value used in calculation.
            base: whether or not to calculate base entropy based solely on the
                dependent value (default False).

        Returns:
            A float of the entropy of the given value.

        """
        counts = self.value_counts(subset, attr, value, base)
        total = float(sum(counts.values()))  # Coerce to float division
        entropy = 0
        for dv in counts:  # For each dependent value
            proportion = counts[dv] / total
            entropy += -(proportion*math.log(proportion, 2))
        return entropy 
開發者ID:jayelm,項目名稱:decisiontrees,代碼行數:25,代碼來源:id3.py

示例2: get_similarity

# 需要導入模塊: import math [as 別名]
# 或者: from math import log [as 別名]
def get_similarity(word_list1, word_list2):
    """默認的用於計算兩個句子相似度的函數。

    Keyword arguments:
    word_list1, word_list2  --  分別代表兩個句子,都是由單詞組成的列表
    """
    words   = list(set(word_list1 + word_list2))        
    vector1 = [float(word_list1.count(word)) for word in words]
    vector2 = [float(word_list2.count(word)) for word in words]
    
    vector3 = [vector1[x]*vector2[x]  for x in xrange(len(vector1))]
    vector4 = [1 for num in vector3 if num > 0.]
    co_occur_num = sum(vector4)

    if abs(co_occur_num) <= 1e-12:
        return 0.
    
    denominator = math.log(float(len(word_list1))) + math.log(float(len(word_list2))) # 分母
    
    if abs(denominator) < 1e-12:
        return 0.
    
    return co_occur_num / denominator 
開發者ID:ouprince,項目名稱:text-rank,代碼行數:25,代碼來源:util.py

示例3: draw

# 需要導入模塊: import math [as 別名]
# 或者: from math import log [as 別名]
def draw(self, true_classes):
        """Draw samples from log uniform distribution and returns sampled candidates,
        expected count for true classes and sampled classes."""
        range_max = self.range_max
        num_sampled = self.num_sampled
        ctx = true_classes.context
        log_range = math.log(range_max + 1)
        num_tries = 0
        true_classes = true_classes.reshape((-1,))
        sampled_classes, num_tries = self.sampler.sample_unique(num_sampled)

        true_cls = true_classes.as_in_context(ctx).astype('float64')
        prob_true = ((true_cls + 2.0) / (true_cls + 1.0)).log() / log_range
        count_true = self._prob_helper(num_tries, num_sampled, prob_true)

        sampled_classes = ndarray.array(sampled_classes, ctx=ctx, dtype='int64')
        sampled_cls_fp64 = sampled_classes.astype('float64')
        prob_sampled = ((sampled_cls_fp64 + 2.0) / (sampled_cls_fp64 + 1.0)).log() / log_range
        count_sampled = self._prob_helper(num_tries, num_sampled, prob_sampled)
        return [sampled_classes, count_true, count_sampled] 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:22,代碼來源:sampler.py

示例4: _compute_delta

# 需要導入模塊: import math [as 別名]
# 或者: from math import log [as 別名]
def _compute_delta(self, log_moments, eps):
    """Compute delta for given log_moments and eps.

    Args:
      log_moments: the log moments of privacy loss, in the form of pairs
        of (moment_order, log_moment)
      eps: the target epsilon.
    Returns:
      delta
    """
    min_delta = 1.0
    for moment_order, log_moment in log_moments:
      if math.isinf(log_moment) or math.isnan(log_moment):
        sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
        continue
      if log_moment < moment_order * eps:
        min_delta = min(min_delta,
                        math.exp(log_moment - moment_order * eps))
    return min_delta 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:accountant.py

示例5: _compute_delta

# 需要導入模塊: import math [as 別名]
# 或者: from math import log [as 別名]
def _compute_delta(log_moments, eps):
  """Compute delta for given log_moments and eps.

  Args:
    log_moments: the log moments of privacy loss, in the form of pairs
      of (moment_order, log_moment)
    eps: the target epsilon.
  Returns:
    delta
  """
  min_delta = 1.0
  for moment_order, log_moment in log_moments:
    if moment_order == 0:
      continue
    if math.isinf(log_moment) or math.isnan(log_moment):
      sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
      continue
    if log_moment < moment_order * eps:
      min_delta = min(min_delta,
                      math.exp(log_moment - moment_order * eps))
  return min_delta 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:23,代碼來源:gaussian_moments.py

示例6: _compute_eps

# 需要導入模塊: import math [as 別名]
# 或者: from math import log [as 別名]
def _compute_eps(log_moments, delta):
  """Compute epsilon for given log_moments and delta.

  Args:
    log_moments: the log moments of privacy loss, in the form of pairs
      of (moment_order, log_moment)
    delta: the target delta.
  Returns:
    epsilon
  """
  min_eps = float("inf")
  for moment_order, log_moment in log_moments:
    if moment_order == 0:
      continue
    if math.isinf(log_moment) or math.isnan(log_moment):
      sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
      continue
    min_eps = min(min_eps, (log_moment - math.log(delta)) / moment_order)
  return min_eps 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:gaussian_moments.py

示例7: get_privacy_spent

# 需要導入模塊: import math [as 別名]
# 或者: from math import log [as 別名]
def get_privacy_spent(log_moments, target_eps=None, target_delta=None):
  """Compute delta (or eps) for given eps (or delta) from log moments.

  Args:
    log_moments: array of (moment_order, log_moment) pairs.
    target_eps: if not None, the epsilon for which we would like to compute
      corresponding delta value.
    target_delta: if not None, the delta for which we would like to compute
      corresponding epsilon value. Exactly one of target_eps and target_delta
      is None.
  Returns:
    eps, delta pair
  """
  assert (target_eps is None) ^ (target_delta is None)
  assert not ((target_eps is None) and (target_delta is None))
  if target_eps is not None:
    return (target_eps, _compute_delta(log_moments, target_eps))
  else:
    return (_compute_eps(log_moments, target_delta), target_delta) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:gaussian_moments.py

示例8: testCodeLength

# 需要導入模塊: import math [as 別名]
# 或者: from math import log [as 別名]
def testCodeLength(self):
    shape = [2, 4]
    proba_feed = [[0.65, 0.25, 0.70, 0.10],
                  [0.28, 0.20, 0.44, 0.54]]
    symbol_feed = [[1.0, 0.0, 1.0, 0.0],
                   [0.0, 0.0, 0.0, 1.0]]
    mean_code_length = - (
        (math.log(0.65) + math.log(0.75) + math.log(0.70) + math.log(0.90) +
         math.log(0.72) + math.log(0.80) + math.log(0.56) + math.log(0.54)) /
        math.log(2.0)) / (shape[0] * shape[1])

    symbol = tf.placeholder(dtype=tf.float32, shape=shape)
    proba = tf.placeholder(dtype=tf.float32, shape=shape)
    code_length_calculator = blocks_entropy_coding.CodeLength()
    code_length = code_length_calculator(symbol, proba)

    with self.test_session():
      tf.global_variables_initializer().run()
      code_length_eval = code_length.eval(
          feed_dict={symbol: symbol_feed, proba: proba_feed})

    self.assertAllClose(mean_code_length, code_length_eval) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:blocks_entropy_coding_test.py

示例9: __init__

# 需要導入模塊: import math [as 別名]
# 或者: from math import log [as 別名]
def __init__(self, T, opts):
        super(LOOLoss, self).__init__()
        
        self.gpu = opts.gpu
        self.loo = opts.loo if 'LOO' in opts.method else 0.
        self.label_smooth = opts.label_smooth
        self.kld_u_const = math.log(len(T['wnids']))
        self.relevant = [torch.from_numpy(rel) for rel in T['relevant']]
        self.labels_relevant = torch.from_numpy(T['labels_relevant'].astype(np.uint8))
        ch_slice = T['ch_slice']
        if opts.class_wise:
            num_children = T['num_children']
            num_supers = len(num_children)
            self.class_weight = torch.zeros(ch_slice[-1])
            for m, num_ch in enumerate(num_children):
                self.class_weight[ch_slice[m]:ch_slice[m+1]] = 1. / (num_ch * num_supers)
        else:
            self.class_weight = torch.ones(ch_slice[-1]) / ch_slice[-1] 
開發者ID:kibok90,項目名稱:cvpr2018-hnd,代碼行數:20,代碼來源:models.py

示例10: get_timing_signal

# 需要導入模塊: import math [as 別名]
# 或者: from math import log [as 別名]
def get_timing_signal(length,
                      min_timescale=1,
                      max_timescale=1e4,
                      num_timescales=16):
  """Create Tensor of sinusoids of different frequencies.

  Args:
    length: Length of the Tensor to create, i.e. Number of steps.
    min_timescale: a float
    max_timescale: a float
    num_timescales: an int

  Returns:
    Tensor of shape (length, 2*num_timescales)
  """
  positions = tf.to_float(tf.range(length))
  log_timescale_increment = (
      math.log(max_timescale / min_timescale) / (num_timescales - 1))
  inv_timescales = min_timescale * tf.exp(
      tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
  scaled_time = tf.expand_dims(positions, 1) * tf.expand_dims(inv_timescales, 0)
  return tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:24,代碼來源:common_layers.py

示例11: __init__

# 需要導入模塊: import math [as 別名]
# 或者: from math import log [as 別名]
def __init__(
            self,
            classes,
            alpha,
            p=0.9,
            from_normx=False,
            weight=None,
            size_average=None,
            ignore_index=-100,
            reduce=None,
            reduction='mean'):
        super(L2Softmax, self).__init__(
            weight, size_average, reduce, reduction)
        alpha_low = math.log(p * (classes - 2) / (1 - p))
        assert alpha > alpha_low, "For given probability of p={}, alpha should higher than {}.".format(
            p, alpha_low)
        self.ignore_index = ignore_index
        self.alpha = alpha
        self.from_normx = from_normx 
開發者ID:PistonY,項目名稱:torch-toolbox,代碼行數:21,代碼來源:loss.py

示例12: log2

# 需要導入模塊: import math [as 別名]
# 或者: from math import log [as 別名]
def log2(x):
    try:
        return math.log(x, 2)
    except ValueError:
        return float("nan") 
開發者ID:svviz,項目名稱:svviz,代碼行數:7,代碼來源:remap.py

示例13: corpus_bleu

# 需要導入模塊: import math [as 別名]
# 或者: from math import log [as 別名]
def corpus_bleu(hypothesis, references, max_n=4):
    assert(len(hypothesis) == len(references))
    clip_count, count, total_len_hyp, total_len_ref = bleu_count(hypothesis, references, max_n=max_n)
    brevity_penalty = 1.0
    bleu_scores = []
    bleu = 0
    for n in range(max_n):
        if count[n]>0:
            bleu_scores.append(clip_count[n]/count[n])
        else:
            bleu_scores.append(0)
    if total_len_hyp < total_len_ref:
        if total_len_hyp==0:
            brevity_penalty = 0.0
        else:
            brevity_penalty = math.exp(1 - total_len_ref/total_len_hyp)
    def my_log(x):
        if x == 0:
            return -9999999999.0
        elif x < 0:
            raise Exception("Value Error")
        return math.log(x)
    log_bleu = 0.0
    for n in range(max_n):
        log_bleu += my_log(bleu_scores[n])
    bleu = brevity_penalty*math.exp(log_bleu / float(max_n))
    return [bleu]+bleu_scores, [brevity_penalty, total_len_hyp/total_len_ref, total_len_hyp, total_len_ref] 
開發者ID:Nrgeup,項目名稱:controllable-text-attribute-transfer,代碼行數:29,代碼來源:bleu.py

示例14: incremental_sent_bleu

# 需要導入模塊: import math [as 別名]
# 或者: from math import log [as 別名]
def incremental_sent_bleu(hypothesis, references, max_n=4):
    clip_count, count, total_len_hyp, total_len_ref = incremental_bleu_count([hypothesis], [references], max_n=max_n)
    clip_count = clip_count[0]
    count = count[0]
    total_len_hyp = total_len_hyp[0]
    total_len_ref = total_len_ref[0]
    n_len = len(clip_count)
    ret = []
    for i in range(n_len):
        brevity_penalty = 1.0
        bleu_scores = []
        bleu = 0
        for n in range(max_n):
            if count[i][n]>0:
                bleu_scores.append(clip_count[i][n]/count[i][n])
            else:
                bleu_scores.append(0)
        if total_len_hyp[i] < total_len_ref[i]:
            if total_len_hyp[i]==0:
                brevity_penalty = 0.0
            else:
                brevity_penalty = math.exp(1 - total_len_ref[i]/total_len_hyp[i])
        def my_log(x):
            if x == 0:
                return -9999999999.0
            elif x < 0:
                raise Exception("Value Error")
            return math.log(x)
        log_bleu = 0.0
        for n in range(max_n):
            log_bleu += my_log(bleu_scores[n])
        bleu = brevity_penalty*math.exp(log_bleu / float(max_n))
        ret.append(bleu)
    return ret 
開發者ID:Nrgeup,項目名稱:controllable-text-attribute-transfer,代碼行數:36,代碼來源:bleu.py

示例15: incremental_test_corpus_bleu

# 需要導入模塊: import math [as 別名]
# 或者: from math import log [as 別名]
def incremental_test_corpus_bleu(hypothesis, references, max_n=4):
    assert(len(hypothesis) == len(references))
    tmp_clip_count, tmp_count, tmp_total_len_hyp, tmp_total_len_ref = incremental_bleu_count(hypothesis, references, max_n=max_n)
    clip_count = [0]*4
    count = [0]*4
    total_len_hyp = 0
    total_len_ref = 0
    for i in range(len(hypothesis)):
        for n in range(4):
            clip_count[n]+=tmp_clip_count[i][-1][n]
            count[n] += tmp_count[i][-1][n]
        total_len_hyp += tmp_total_len_hyp[i][-1]
        total_len_ref += tmp_total_len_ref[i][-1]
    brevity_penalty = 1.0
    bleu_scores = []
    bleu = 0
    for n in range(max_n):
        if count[n]>0:
            bleu_scores.append(clip_count[n]/count[n])
        else:
            bleu_scores.append(0)
    if total_len_hyp < total_len_ref:
        if total_len_hyp==0:
            brevity_penalty = 0.0
        else:
            brevity_penalty = math.exp(1 - total_len_ref/total_len_hyp)
    def my_log(x):
        if x == 0:
            return -9999999999.0
        elif x < 0:
            raise Exception("Value Error")
        return math.log(x)
    log_bleu = 0.0
    for n in range(max_n):
        log_bleu += my_log(bleu_scores[n])
    bleu = brevity_penalty*math.exp(log_bleu / float(max_n))
    return [bleu]+bleu_scores, [brevity_penalty, total_len_hyp/total_len_ref, total_len_hyp, total_len_ref] 
開發者ID:Nrgeup,項目名稱:controllable-text-attribute-transfer,代碼行數:39,代碼來源:bleu.py


注:本文中的math.log方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。