本文整理匯總了Python中math.lgamma方法的典型用法代碼示例。如果您正苦於以下問題:Python math.lgamma方法的具體用法?Python math.lgamma怎麽用?Python math.lgamma使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類math
的用法示例。
在下文中一共展示了math.lgamma方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import math [as 別名]
# 或者: from math import lgamma [as 別名]
def __init__(self, alpha, beta, name, errcodeBase, pos):
self.name = name
self.errcodeBase = errcodeBase
self.pos = pos
# first shape parameter
self.alpha = alpha
# second shape parameter
self.beta = beta
if (self.alpha <= 0.0) or (self.beta <= 0.0):
raise PFARuntimeException("invalid parameterization", self.errcodeBase + 0, self.name, self.pos)
# normalization factor
self.Z = math.lgamma(self.alpha) + math.lgamma(self.beta) \
- math.lgamma(self.alpha + self.beta)
# tolerance
self.epsilon = 1e-15
# max Iterations
self.maxIter = 1000
示例2: multinomLog2
# 需要導入模塊: import math [as 別名]
# 或者: from math import lgamma [as 別名]
def multinomLog2(selectors):
"""
Function calculates logarithm 2 of a kind of multinom.
selectors: list of integers
"""
ln2 = 0.69314718055994528622
noAll = sum(selectors)
lgNf = math.lgamma(noAll + 1.0) / ln2 # log2(N!)
lgnFac = []
for selector in selectors:
if selector == 0 or selector == 1:
lgnFac.append(0.0)
elif selector == 2:
lgnFac.append(1.0)
elif selector == noAll:
lgnFac.append(lgNf)
else:
lgnFac.append(math.lgamma(selector + 1.0) / ln2)
return lgNf - sum(lgnFac)
示例3: PDF
# 需要導入模塊: import math [as 別名]
# 或者: from math import lgamma [as 別名]
def PDF(self, x):
if (self.alpha == 0.0) or (self.beta == 0.0):
if (x != 0.0):
return 0.0
else:
return float("inf")
elif (x < 0.0):
return 0.0
elif (self.alpha == 1.0) and (x == 0.0):
return self.beta
else:
try:
term1a = math.log(x/self.beta) * (self.alpha - 1.0)
except ValueError:
term1a = float("-inf") * (self.alpha - 1.0)
term1 = term1a - math.log(self.beta)
term2 = -x/self.beta
term3 = math.lgamma(self.alpha)
return math.exp(term1 + (term2 - term3))
示例4: regularizedGammaP
# 需要導入模塊: import math [as 別名]
# 或者: from math import lgamma [as 別名]
def regularizedGammaP(a, x):
if (x < 0.0) or (a <= 0.0):
raise Exception
maxIter = 1000
epsilon = 1e-15
n = 0.0
an = 1.0/a
total = an
while (abs(an/total) > epsilon) and \
(n < maxIter) and \
(total < float("inf")):
n = n + 1.0
an = an * (x / (a + n))
total = total + an
if n >= maxIter:
raise Exception
elif total == float("inf"):
ans = 1.0
else:
ans = math.exp(-x + (a*math.log(x)) - math.lgamma(a)) * total
return ans
# http://www.johnkerl.org/python/sp_funcs_m.py.txt
示例5: gser
# 需要導入模塊: import math [as 別名]
# 或者: from math import lgamma [as 別名]
def gser(a, x, itmax=700, eps=3.0e-7):
"""Series approximation to the incomplete gamma function."""
gln = math.lgamma(a)
if (x < 0.0):
raise Exception
if (x == 0.0):
return [0.0]
ap = a
total = 1.0 / a
delta = total
n = 1
while n <= itmax:
ap = ap + 1.0
delta = delta * x / ap
total = total + delta
if (abs(delta) < abs(total)*eps):
return [total * math.exp(-x + a*math.log(x) - gln), gln]
n = n + 1
raise Exception
# http://www.johnkerl.org/python/sp_funcs_m.py.txt
# used by incompleteGamma
示例6: nChooseK
# 需要導入模塊: import math [as 別名]
# 或者: from math import lgamma [as 別名]
def nChooseK(n, k):
# is n an integer?
nInt = (math.floor(n) == n)
if n == k or k == 0:
return 1
if (n < k) or (k < 0):
raise Exception
if (nInt) and (n < 0.0):
b = pow(-1.0, k) * math.exp(math.lgamma(abs(n + k)) \
- math.lgamma(k + 1.0) \
- math.lgamma(abs(n)))
return round(b)
if (n >= k):
b = math.exp(math.lgamma(n + 1.0) - math.lgamma(k + 1.0) \
- math.lgamma(n - k + 1.0))
return round(b)
if not (nInt) and (n < k):
b = (1.0/math.pi) * math.exp(math.lgamma(n + 1.0) \
- math.lgamma(k + 1) \
+ math.lgamma(k - n) \
+ math.log(math.sin(math.pi * (n - k + 1.0))))
return round(b)
return 0.0
示例7: log_betabin
# 需要導入模塊: import math [as 別名]
# 或者: from math import lgamma [as 別名]
def log_betabin(k, n, alpha, beta):
try:
c = math.lgamma(alpha + beta) - math.lgamma(alpha) - math.lgamma(beta)
# logger.debug("c: %f" % c)
except:
print('alpha = {}, beta = {}'.format(alpha, beta))
raise
if isinstance(k, (list, np.ndarray)):
if len(k) != len(n):
print('length of k in %d and length of n is %d' % (len(k), len(n)))
raise ValueError
lbeta = []
for ki, ni in zip(k, n):
lbeta.append(math.lgamma(ki + alpha) + math.lgamma(ni - ki + beta) - math.lgamma(ni + alpha + beta) + c)
return np.array(lbeta)
else:
return math.lgamma(k + alpha) + math.lgamma(max(1, n - k + beta)) - math.lgamma(n + alpha + beta) + c
示例8: _gser
# 需要導入模塊: import math [as 別名]
# 或者: from math import lgamma [as 別名]
def _gser(a,x):
"Series representation of Gamma. NumRec sect 6.1."
ITMAX=100
EPS=3.e-7
gln=lgamma(a)
assert(x>=0),'x < 0 in gser'
if x == 0 : return 0,gln
ap = a
delt = sum = 1./a
for i in range(ITMAX):
ap=ap+1.
delt=delt*x/ap
sum=sum+delt
if abs(delt) < abs(sum)*EPS: break
else:
print('a too large, ITMAX too small in gser')
gamser=sum*np.exp(-x+a*np.log(x)-gln)
return gamser,gln
示例9: log_betabin
# 需要導入模塊: import math [as 別名]
# 或者: from math import lgamma [as 別名]
def log_betabin(k,n,alpha,beta):
import math
try:
Const = math.lgamma(alpha + beta) - math.lgamma(alpha) - math.lgamma(beta)
except:
print 'alpha = {}, beta = {}'.format(alpha,beta)
if isinstance(k,list) or isinstance(k,np.ndarray):
if len(k)!=len(n):
print 'length of k is %d and length of n is %d'%(len(k),len(n))
raise ValueError
lbeta = []
for ki,ni in zip(k,n):
# lbeta.append(math.lgamma(ni+1)- math.lgamma(ki+1) - math.lgamma(ni-ki+1) + math.lgamma(ki+alpha) + math.lgamma(ni-ki+beta) - math.lgamma(ni+alpha+beta) + Const)
lbeta.append(math.lgamma(ki+alpha) + math.lgamma(ni-ki+beta) - math.lgamma(ni+alpha+beta) + Const)
return np.array(lbeta)
else:
return math.lgamma(k+alpha) + math.lgamma(n-k+beta) - math.lgamma(n+alpha+beta) + Const
# return math.lgamma(n+1)- math.lgamma(k+1) - math.lgamma(n-k+1) + math.lgamma(k+alpha) + math.lgamma(n-k+beta) - math.lgamma(n+alpha+beta) + Const
示例10: __call__
# 需要導入模塊: import math [as 別名]
# 或者: from math import lgamma [as 別名]
def __call__(self, state, scope, pos, paramTypes, a):
if math.isinf(a) and a > 0:
return float("nan")
try:
if a <= 0: raise Exception
else:
return math.lgamma(a)
except:
raise PFARuntimeException("domain error", self.errcodeBase + 0, self.name, pos)
示例11: logBetaFunction
# 需要導入模塊: import math [as 別名]
# 或者: from math import lgamma [as 別名]
def logBetaFunction(a, b):
if (a <= 0.0) or (b <= 0.0):
raise Exception
else:
return math.lgamma(a) + math.lgamma(b) - math.lgamma(a + b)
# numerical recipes in C
示例12: gcf
# 需要導入模塊: import math [as 別名]
# 或者: from math import lgamma [as 別名]
def gcf(a, x, itmax=200, eps=3.0e-7):
"""Continued fraction approximation of the incomplete gamma function."""
gln = math.lgamma(a)
gold = 0.0
a0 = 1.0
a1 = x
b0 = 0.0
b1 = 1.0
fac = 1.0
n = 1
while n <= itmax:
an = n
ana = an - a
a0 = (a1 + a0*ana)*fac
b0 = (b1 + b0*ana)*fac
anf = an*fac
a1 = x*a0 + anf*a1
b1 = x*b0 + anf*b1
if (a1 != 0.0):
fac = 1.0 / a1
g = b1*fac
if (abs((g-gold)/g) < eps):
return (g*math.exp(-x+a*math.log(x)-gln), gln)
gold = g
n = n + 1
raise Exception
示例13: logp_crp
# 需要導入模塊: import math [as 別名]
# 或者: from math import lgamma [as 別名]
def logp_crp(N, Nk, alpha):
"""Returns the log normalized P(N,K|alpha), where N is the number of
customers and K is the number of tables.
http://gershmanlab.webfactional.com/pubs/GershmanBlei12.pdf#page=4 (eq 8)
"""
return len(Nk)*log(alpha) + np.sum(lgamma(c) for c in Nk) \
+ lgamma(alpha) - lgamma(N+alpha)
示例14: logp_crp_unorm
# 需要導入模塊: import math [as 別名]
# 或者: from math import lgamma [as 別名]
def logp_crp_unorm(N, K, alpha):
"""Returns the log unnormalized P(N,K|alpha), where N is the number of
customers and K is the number of tables. Use for effeciency to avoid
computing terms that are not a function of alpha.
"""
return K*log(alpha) + lgamma(alpha) - lgamma(N+alpha)
示例15: log_nCk
# 需要導入模塊: import math [as 別名]
# 或者: from math import lgamma [as 別名]
def log_nCk(n, k):
"""log(choose(n,k)) with overflow protection."""
if n == 0 or k == 0 or n == k:
return 0
return log(n) + lgamma(n) - log(k) - lgamma(k) - log(n-k) - lgamma(n-k)