本文整理匯總了Python中math.isinf方法的典型用法代碼示例。如果您正苦於以下問題:Python math.isinf方法的具體用法?Python math.isinf怎麽用?Python math.isinf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類math
的用法示例。
在下文中一共展示了math.isinf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _compute_delta
# 需要導入模塊: import math [as 別名]
# 或者: from math import isinf [as 別名]
def _compute_delta(self, log_moments, eps):
"""Compute delta for given log_moments and eps.
Args:
log_moments: the log moments of privacy loss, in the form of pairs
of (moment_order, log_moment)
eps: the target epsilon.
Returns:
delta
"""
min_delta = 1.0
for moment_order, log_moment in log_moments:
if math.isinf(log_moment) or math.isnan(log_moment):
sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
continue
if log_moment < moment_order * eps:
min_delta = min(min_delta,
math.exp(log_moment - moment_order * eps))
return min_delta
示例2: _compute_delta
# 需要導入模塊: import math [as 別名]
# 或者: from math import isinf [as 別名]
def _compute_delta(log_moments, eps):
"""Compute delta for given log_moments and eps.
Args:
log_moments: the log moments of privacy loss, in the form of pairs
of (moment_order, log_moment)
eps: the target epsilon.
Returns:
delta
"""
min_delta = 1.0
for moment_order, log_moment in log_moments:
if moment_order == 0:
continue
if math.isinf(log_moment) or math.isnan(log_moment):
sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
continue
if log_moment < moment_order * eps:
min_delta = min(min_delta,
math.exp(log_moment - moment_order * eps))
return min_delta
示例3: GenerateBinomialTable
# 需要導入模塊: import math [as 別名]
# 或者: from math import isinf [as 別名]
def GenerateBinomialTable(m):
"""Generate binomial table.
Args:
m: the size of the table.
Returns:
A two dimensional array T where T[i][j] = (i choose j),
for 0<= i, j <=m.
"""
table = numpy.zeros((m + 1, m + 1), dtype=numpy.float64)
for i in range(m + 1):
table[i, 0] = 1
for i in range(1, m + 1):
for j in range(1, m + 1):
v = table[i - 1, j] + table[i - 1, j -1]
assert not math.isnan(v) and not math.isinf(v)
table[i, j] = v
return tf.convert_to_tensor(table)
示例4: from_float
# 需要導入模塊: import math [as 別名]
# 或者: from math import isinf [as 別名]
def from_float(cls, f):
"""Converts a finite float to a rational number, exactly.
Beware that Fraction.from_float(0.3) != Fraction(3, 10).
"""
if isinstance(f, numbers.Integral):
return cls(f)
elif not isinstance(f, float):
raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
(cls.__name__, f, type(f).__name__))
if math.isnan(f):
raise ValueError("Cannot convert %r to %s." % (f, cls.__name__))
if math.isinf(f):
raise OverflowError("Cannot convert %r to %s." % (f, cls.__name__))
return cls(*f.as_integer_ratio())
示例5: __eq__
# 需要導入模塊: import math [as 別名]
# 或者: from math import isinf [as 別名]
def __eq__(a, b):
"""a == b"""
if isinstance(b, numbers.Rational):
return (a._numerator == b.numerator and
a._denominator == b.denominator)
if isinstance(b, numbers.Complex) and b.imag == 0:
b = b.real
if isinstance(b, float):
if math.isnan(b) or math.isinf(b):
# comparisons with an infinity or nan should behave in
# the same way for any finite a, so treat a as zero.
return 0.0 == b
else:
return a == a.from_float(b)
else:
# Since a doesn't know how to compare with b, let's give b
# a chance to compare itself with a.
return NotImplemented
示例6: _richcmp
# 需要導入模塊: import math [as 別名]
# 或者: from math import isinf [as 別名]
def _richcmp(self, other, op):
"""Helper for comparison operators, for internal use only.
Implement comparison between a Rational instance `self`, and
either another Rational instance or a float `other`. If
`other` is not a Rational instance or a float, return
NotImplemented. `op` should be one of the six standard
comparison operators.
"""
# convert other to a Rational instance where reasonable.
if isinstance(other, numbers.Rational):
return op(self._numerator * other.denominator,
self._denominator * other.numerator)
if isinstance(other, float):
if math.isnan(other) or math.isinf(other):
return op(0.0, other)
else:
return op(self, self.from_float(other))
else:
return NotImplemented
示例7: draw_setpoint
# 需要導入模塊: import math [as 別名]
# 或者: from math import isinf [as 別名]
def draw_setpoint(self, *args):
# draw a setpoint
if self.setpoint_canvas:
self.canvas.after.remove(self.setpoint_canvas)
self.setpoint_canvas = None
if math.isnan(self.setpoint_value) or math.isinf(self.setpoint_value):
return
v = self.value_to_angle(self.setpoint_value)
length = self.dial_diameter / 2.0 - self.tic_length if not self.setpoint_length else self.setpoint_length
self.setpoint_canvas = InstructionGroup()
self.setpoint_canvas.add(PushMatrix())
self.setpoint_canvas.add(Color(*self.setpoint_color))
self.setpoint_canvas.add(Rotate(angle=v, axis=(0, 0, -1), origin=self.dial_center))
self.setpoint_canvas.add(Translate(self.dial_center[0], self.dial_center[1]))
self.setpoint_canvas.add(Line(points=[0, 0, 0, length], width=self.setpoint_thickness, cap='none'))
# self.setpoint_canvas.add(SmoothLine(points=[0, 0, 0, length], width=self.setpoint_thickness))
self.setpoint_canvas.add(PopMatrix())
self.canvas.after.add(self.setpoint_canvas)
示例8: __call__
# 需要導入模塊: import math [as 別名]
# 或者: from math import isinf [as 別名]
def __call__(self, state, scope, pos, paramTypes, x, *args):
if len(args) == 3:
numbins, low, high = args
if low >= high or math.isnan(low) or math.isnan(high):
raise PFARuntimeException("bad histogram range", self.errcodeBase + 0, self.name, pos)
if numbins < 1:
raise PFARuntimeException("bad histogram scale", self.errcodeBase + 1, self.name, pos)
if math.isnan(x) or x < low or x >= high:
raise PFARuntimeException("x out of range", self.errcodeBase + 2, self.name, pos)
out = int(math.floor(numbins * div((x - low), (high - low))))
if out < 0 or out >= numbins:
raise PFARuntimeException("x out of range", self.errcodeBase + 2, self.name, pos)
return out
else:
origin, width = args
if math.isnan(origin) or math.isinf(origin):
raise PFARuntimeException("bad histogram range", self.errcodeBase + 0, self.name, pos)
if width <= 0.0 or math.isnan(width):
raise PFARuntimeException("bad histogram scale", self.errcodeBase + 1, self.name, pos)
if math.isnan(x) or math.isinf(x):
raise PFARuntimeException("x out of range", self.errcodeBase + 2, self.name, pos)
else:
return int(math.floor(div((x - origin), width)))
示例9: __call__
# 需要導入模塊: import math [as 別名]
# 或者: from math import isinf [as 別名]
def __call__(self, state, scope, pos, paramTypes, str):
try:
out = float(str)
except ValueError:
raise PFARuntimeException("not a single-precision float", self.errcodeBase + 0, self.name, pos)
if math.isnan(out):
return out
elif math.isinf(out):
return out
elif out > FLOAT_MAX_VALUE:
return float("inf")
elif -out > FLOAT_MAX_VALUE:
return float("-inf")
elif abs(out) < FLOAT_MIN_VALUE:
return 0.0
else:
return out
示例10: __call__
# 需要導入模塊: import math [as 別名]
# 或者: from math import isinf [as 別名]
def __call__(self, state, scope, pos, paramTypes, state_):
chi2 = state_["chi2"]
dof = state_["dof"]
if dof < 0:
raise PFARuntimeException("invalid parameterization", self.errcodeBase + 0, self.name, pos)
elif dof == 0:
if chi2 > 0:
return 1.0
else:
return 0.0
elif math.isnan(chi2):
return float("nan")
elif math.isinf(chi2):
if chi2 > 0:
return 1.0
else:
return 0.0
else:
return float(Chi2Distribution(dof, self.errcodeBase + 0, self.name, pos).CDF(chi2))
示例11: __call__
# 需要導入模塊: import math [as 別名]
# 或者: from math import isinf [as 別名]
def __call__(self, state, scope, pos, paramTypes, x, *others):
if len(others) == 2:
mu, sigma = others
else:
mu = others[0]["mean"]
if math.isnan(others[0]["variance"]) or others[0]["variance"] < 0.0:
raise PFARuntimeException("invalid parameterization", self.errcodeBase + 0, self.name, pos)
else:
sigma = math.sqrt(others[0]["variance"])
if math.isinf(mu) or math.isnan(mu) or math.isinf(sigma) or math.isnan(sigma) or sigma < 0.0:
raise PFARuntimeException("invalid parameterization", self.errcodeBase + 0, self.name, pos)
elif math.isinf(x) or math.isnan(x):
raise PFARuntimeException("invalid input", self.errcodeBase + 1, self.name, pos)
elif sigma == 0.0:
if x != mu:
return float("-inf")
else:
return float("inf")
else:
return GaussianDistribution(mu, sigma, self.errcodeBase + 0, self.name, pos).LL(x)
示例12: __call__
# 需要導入模塊: import math [as 別名]
# 或者: from math import isinf [as 別名]
def __call__(self, state, scope, pos, paramTypes, x):
if isinstance(x, (list, tuple)) and all(isinstance(xi, (list, tuple)) for xi in x):
rows = len(x)
if rows < 1:
raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
cols = len(x[0])
if cols < 1:
raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
if raggedArray(x):
raise PFARuntimeException("ragged columns", self.errcodeBase + 1, self.name, pos)
if rows != cols:
raise PFARuntimeException("non-square matrix", self.errcodeBase + 2, self.name, pos)
if any(any(math.isnan(z) or math.isinf(z) for z in row) for row in x):
raise PFARuntimeException("non-finite matrix", self.errcodeBase + 3, self.name, pos)
return matrixToArrays(self.calculate(arraysToMatrix(x), rows))
elif isinstance(x, dict) and all(isinstance(x[i], dict) for i in x.keys()):
keys = list(rowKeys(x).union(colKeys(x)))
if len(keys) < 1 or all(len(z) == 0 for z in x.values()):
raise PFARuntimeException("too few rows/cols", self.errcodeBase + 0, self.name, pos)
if any(any(math.isnan(z) or math.isinf(z) for z in row.values()) for row in x.values()):
raise PFARuntimeException("non-finite matrix", self.errcodeBase + 3, self.name, pos)
return matrixToMaps(self.calculate(mapsToMatrix(x, keys, keys), len(keys)), map(str, xrange(len(keys))), keys)
示例13: logpdf
# 需要導入模塊: import math [as 別名]
# 或者: from math import isinf [as 別名]
def logpdf(self, rowid, targets, constraints=None, inputs=None):
if constraints is None:
constraints = {}
if inputs is None:
inputs = {}
# Compute joint probability.
samples_joint, weights_joint = zip(*[
self.weighted_sample(
rowid, [], gu.merged(targets, constraints), inputs)
for _i in xrange(self.accuracy)
])
logp_joint = gu.logmeanexp(weights_joint)
# Compute marginal probability.
samples_marginal, weights_marginal = zip(*[
self.weighted_sample(rowid, [], constraints, inputs)
for _i in xrange(self.accuracy)
]) if constraints else ({}, [0.])
if all(isinf(l) for l in weights_marginal):
raise ValueError('Zero density constraints: %s' % (constraints,))
logp_constraints = gu.logmeanexp(weights_marginal)
# Return log ratio.
return logp_joint - logp_constraints
示例14: is_nan_or_inf
# 需要導入模塊: import math [as 別名]
# 或者: from math import isinf [as 別名]
def is_nan_or_inf(number):
return math.isnan(number) or math.isinf(number)
示例15: _compute_eps
# 需要導入模塊: import math [as 別名]
# 或者: from math import isinf [as 別名]
def _compute_eps(self, log_moments, delta):
min_eps = float("inf")
for moment_order, log_moment in log_moments:
if math.isinf(log_moment) or math.isnan(log_moment):
sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
continue
min_eps = min(min_eps, (log_moment - math.log(delta)) / moment_order)
return min_eps