本文整理匯總了Python中math.isclose方法的典型用法代碼示例。如果您正苦於以下問題:Python math.isclose方法的具體用法?Python math.isclose怎麽用?Python math.isclose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類math
的用法示例。
在下文中一共展示了math.isclose方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: calc_price_change
# 需要導入模塊: import math [as 別名]
# 或者: from math import isclose [as 別名]
def calc_price_change(ratio, min_price_move=DEF_MIN_PRICE_MOVE,
max_price_move=DEF_MAX_PRICE_MOVE):
"""
Make the price move in proportion to the ratio, up to a ceiling
of max_price_move.
"""
direction = 1
if isclose(ratio, 1.0):
return 0
if ratio < 1:
if ratio == 0:
ratio = INF
else:
ratio = 1 / ratio
direction = -1
return direction * min(max_price_move, min_price_move * ratio)
示例2: pad_filter
# 需要導入模塊: import math [as 別名]
# 或者: from math import isclose [as 別名]
def pad_filter(probe):
"""
if source and target aspect is different,
fix it with pillarbox or letterbox
"""
filter_chain = []
if not math.isclose(probe.video[0]['aspect'],
_pre_comp.aspect, abs_tol=0.03):
if probe.video[0]['aspect'] < _pre_comp.aspect:
filter_chain.append(
'pad=ih*{}/{}/sar:ih:(ow-iw)/2:(oh-ih)/2'.format(_pre_comp.w,
_pre_comp.h))
elif probe.video[0]['aspect'] > _pre_comp.aspect:
filter_chain.append(
'pad=iw:iw*{}/{}/sar:(ow-iw)/2:(oh-ih)/2'.format(_pre_comp.h,
_pre_comp.w))
return filter_chain
示例3: scale_filter
# 需要導入模塊: import math [as 別名]
# 或者: from math import isclose [as 別名]
def scale_filter(probe):
"""
if target resolution is different to source add scale filter,
apply also an aspect filter, when is different
"""
filter_chain = []
if int(probe.video[0]['width']) != _pre_comp.w or \
int(probe.video[0]['height']) != _pre_comp.h:
filter_chain.append('scale={}:{}'.format(_pre_comp.w, _pre_comp.h))
if not math.isclose(probe.video[0]['aspect'],
_pre_comp.aspect, abs_tol=0.03):
filter_chain.append('setdar=dar={}'.format(_pre_comp.aspect))
return filter_chain
示例4: get_delta
# 需要導入模塊: import math [as 別名]
# 或者: from math import isclose [as 別名]
def get_delta(begin):
"""
get difference between current time and begin from clip in playlist
"""
current_time = get_time('full_sec')
if _playlist.length:
target_playtime = _playlist.length
else:
target_playtime = 86400.0
if _playlist.start >= current_time and not begin == _playlist.start:
current_time += target_playtime
current_delta = begin - current_time
if math.isclose(current_delta, 86400.0, abs_tol=6):
current_delta -= 86400.0
ref_time = target_playtime + _playlist.start
total_delta = ref_time - begin + current_delta
return current_delta, total_delta
示例5: test_ecm_init
# 需要導入模塊: import math [as 別名]
# 或者: from math import isclose [as 別名]
def test_ecm_init(self):
m = np.array([0.23, .81, .85, .81, .85, .81])
u = np.array([0.34, .23, .50, .23, .30, 0.13])
# Create the train dataset.
X_train, true_links = binary_vectors(
1000, 500, m=m, u=u, random_state=535, return_links=True)
ecm = rl.ECMClassifier(init='random')
ecm.fit(X_train)
ecm.predict(X_train)
print(ecm.m_probs)
print(ecm.log_m_probs)
print(ecm.u_probs)
print(ecm.log_u_probs)
assert math.isclose(ecm.m_probs['c_2'][1], 0.85, abs_tol=0.08)
示例6: test_ecm_init_random_1value
# 需要導入模塊: import math [as 別名]
# 或者: from math import isclose [as 別名]
def test_ecm_init_random_1value(self):
m = np.array([1.0, .81, .85, .81, .85, .81])
u = np.array([1.0, .23, .50, .23, .30, 0.13])
# Create the train dataset.
X_train, true_links = binary_vectors(
1000, 500, m=m, u=u, random_state=536, return_links=True)
ecm = rl.ECMClassifier(init='random')
ecm.fit(X_train)
ecm.predict(X_train)
with pytest.raises(KeyError):
ecm.m_probs['c_1'][0]
assert math.isclose(ecm.m_probs['c_2'][1], 0.85, abs_tol=0.08)
assert math.isclose(ecm.p, 0.5, abs_tol=0.05)
示例7: test_ecm_init_jaro_1value
# 需要導入模塊: import math [as 別名]
# 或者: from math import isclose [as 別名]
def test_ecm_init_jaro_1value(self):
m = np.array([1.0, 0.85, .85, .81, .85, .81])
u = np.array([1.0, .10, .50, .23, .30, 0.13])
# Create the train dataset.
X_train, true_links = binary_vectors(
1000, 500, m=m, u=u, random_state=535, return_links=True)
ecm = rl.ECMClassifier(init='jaro')
ecm.fit(X_train)
ecm.predict(X_train)
with pytest.raises(KeyError):
ecm.m_probs['c_1'][0]
assert math.isclose(ecm.m_probs['c_1'][1], 1.0, abs_tol=0.01)
assert math.isclose(ecm.m_probs['c_2'][1], 0.85, abs_tol=0.08)
assert math.isclose(ecm.u_probs['c_1'][1], 1.0, abs_tol=0.01)
assert math.isclose(ecm.u_probs['c_2'][1], 0.1, abs_tol=0.05)
assert math.isclose(ecm.p, 0.5, abs_tol=0.05)
示例8: test_ecm_init_jaro_skewed
# 需要導入模塊: import math [as 別名]
# 或者: from math import isclose [as 別名]
def test_ecm_init_jaro_skewed(self):
m = np.array([1.0, 0.85, .85, .81, .85, .81])
u = np.array([0.0, .10, .50, .23, .30, 0.13])
# Create the train dataset.
X_train, true_links = binary_vectors(
1000, 500, m=m, u=u, random_state=535, return_links=True)
ecm = rl.ECMClassifier(init='jaro')
ecm.fit(X_train)
ecm.predict(X_train)
assert math.isclose(ecm.m_probs['c_1'][1], 1.0, abs_tol=0.01)
assert math.isclose(ecm.m_probs['c_2'][1], 0.85, abs_tol=0.08)
assert math.isclose(ecm.u_probs['c_1'][1], 0.0, abs_tol=0.01)
assert math.isclose(ecm.u_probs['c_2'][1], 0.1, abs_tol=0.05)
assert math.isclose(ecm.p, 0.5, abs_tol=0.05)
示例9: test_ecm_init_jaro_inf
# 需要導入模塊: import math [as 別名]
# 或者: from math import isclose [as 別名]
def test_ecm_init_jaro_inf(self):
m = np.array([0.95, .81, .85, .81, .85, .81])
u = np.array([0, .23, .50, .23, .30, 0.13])
# Create the train dataset.
X_train, true_links = binary_vectors(
10000, 500, m=m, u=u, random_state=535, return_links=True)
# Create the train dataset.
X_test, true_links = binary_vectors(
1000, 500, m=m, u=u, random_state=535, return_links=True)
ecm = rl.ECMClassifier()
ecm.fit(X_train)
ecm.predict(X_test)
assert math.isclose(ecm.u_probs['c_1'][1], 0.0, abs_tol=1e-3)
assert math.isclose(ecm.u_probs['c_1'][0], 1.0, abs_tol=1e-3)
示例10: _test_float_point_number
# 需要導入模塊: import math [as 別名]
# 或者: from math import isclose [as 別名]
def _test_float_point_number(self, type, byteorder):
float_value = uniform(-3.1415926535, 3.1415926535)
can_data = [0, 0]
configs = [{
"key": type + "Var",
"is_ts": True,
"type": type,
"start": len(can_data),
"length": 4 if type[0] == "f" else 8,
"byteorder": byteorder
}]
can_data.extend(_struct.pack((">" if byteorder[0] == "b" else "<") + type[0],
float_value))
tb_data = self.converter.convert(configs, can_data)
self.assertTrue(isclose(tb_data["telemetry"][type + "Var"], float_value, rel_tol=1e-05))
示例11: test_l2_low
# 需要導入模塊: import math [as 別名]
# 或者: from math import isclose [as 別名]
def test_l2_low(self):
context = np.array([[1, 1, 0, 0, 1], [0, 1, 2, 9, 4], [2, 3, 1, 0, 2]])
rewards = np.array([3, 2, 1])
decisions = np.array([1, 1, 1])
arms, mab = self.predict(arms=[0, 1],
decisions=decisions,
rewards=rewards,
learning_policy=LearningPolicy.LinUCB(alpha=1, l2_lambda=0.1),
context_history=context,
contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]],
seed=123456,
num_run=1,
is_predict=True)
self.assertEqual(mab._imp.num_features, 5)
self.assertEqual(arms, [1, 1])
self.assertTrue(math.isclose(mab._imp.arm_to_model[1].beta[0], 1.59499705, abs_tol=0.00000001))
self.assertTrue(math.isclose(mab._imp.arm_to_model[1].beta[1], -0.91856183, abs_tol=0.00000001))
self.assertTrue(math.isclose(mab._imp.arm_to_model[1].beta[2], -2.49775977, abs_tol=0.00000001))
self.assertTrue(math.isclose(mab._imp.arm_to_model[1].beta[3], 0.14219195, abs_tol=0.00000001))
self.assertTrue(math.isclose(mab._imp.arm_to_model[1].beta[4], 1.65819347, abs_tol=0.00000001))
示例12: test_l2_high
# 需要導入模塊: import math [as 別名]
# 或者: from math import isclose [as 別名]
def test_l2_high(self):
context = np.array([[1, 1, 0, 0, 1], [0, 1, 2, 9, 4], [2, 3, 1, 0, 2]])
rewards = np.array([3, 2, 1])
decisions = np.array([1, 1, 1])
arms, mab = self.predict(arms=[0, 1],
decisions=decisions,
rewards=rewards,
learning_policy=LearningPolicy.LinUCB(alpha=1, l2_lambda=10),
context_history=context,
contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]],
seed=123456,
num_run=1,
is_predict=True)
self.assertEqual(mab._imp.num_features, 5)
self.assertEqual(arms, [0, 0])
self.assertTrue(math.isclose(mab._imp.arm_to_model[1].beta[0], 0.18310155, abs_tol=0.00000001))
self.assertTrue(math.isclose(mab._imp.arm_to_model[1].beta[1], 0.16372811, abs_tol=0.00000001))
self.assertTrue(math.isclose(mab._imp.arm_to_model[1].beta[2], -0.00889076, abs_tol=0.00000001))
self.assertTrue(math.isclose(mab._imp.arm_to_model[1].beta[3], 0.09434416, abs_tol=0.00000001))
self.assertTrue(math.isclose(mab._imp.arm_to_model[1].beta[4], 0.22503229, abs_tol=0.00000001))
示例13: test2_unused_arm
# 需要導入模塊: import math [as 別名]
# 或者: from math import isclose [as 別名]
def test2_unused_arm(self):
arm, mab = self.predict(arms=[1, 2, 3, 4],
decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3],
rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1],
learning_policy=LearningPolicy.Softmax(tau=1),
seed=123456,
num_run=20,
is_predict=True)
self.assertTrue(4 in mab._imp.arm_to_expectation.keys())
self.assertEqual(arm[13], 4)
e_x = mab._imp.arm_to_exponent[4]
prob = mab._imp.arm_to_expectation[4]
self.assertTrue(math.isclose(e_x, 0.513, abs_tol=0.001))
self.assertTrue(math.isclose(prob, 0.173, abs_tol=0.001))
示例14: test_topic_delay
# 需要導入模塊: import math [as 別名]
# 或者: from math import isclose [as 別名]
def test_topic_delay(self):
average_delay_line_pattern = re.compile(r'average delay: (\d+.\d{3})')
stats_line_pattern = re.compile(
r'\s*min: \d+.\d{3}s max: \d+.\d{3}s std dev: \d+.\d{5}s window: \d+'
)
with self.launch_topic_command(arguments=['delay', '/cmd_vel']) as topic_command:
assert topic_command.wait_for_output(functools.partial(
launch_testing.tools.expect_output, expected_lines=[
average_delay_line_pattern, stats_line_pattern
], strict=True
), timeout=10)
assert topic_command.wait_for_shutdown(timeout=10)
head_line = topic_command.output.splitlines()[0]
average_delay = float(average_delay_line_pattern.match(head_line).group(1))
assert math.isclose(average_delay, 0.0, abs_tol=10e-3)
示例15: test_topic_hz
# 需要導入模塊: import math [as 別名]
# 或者: from math import isclose [as 別名]
def test_topic_hz(self):
average_rate_line_pattern = re.compile(r'average rate: (\d+.\d{3})')
stats_line_pattern = re.compile(
r'\s*min: \d+.\d{3}s max: \d+.\d{3}s std dev: \d+.\d{5}s window: \d+'
)
with self.launch_topic_command(arguments=['hz', '/chatter']) as topic_command:
assert topic_command.wait_for_output(functools.partial(
launch_testing.tools.expect_output, expected_lines=[
average_rate_line_pattern, stats_line_pattern
], strict=True
), timeout=10)
assert topic_command.wait_for_shutdown(timeout=10)
head_line = topic_command.output.splitlines()[0]
average_rate = float(average_rate_line_pattern.match(head_line).group(1))
assert math.isclose(average_rate, 1., rel_tol=1e-2)