當前位置: 首頁>>代碼示例>>Python>>正文


Python math.acos方法代碼示例

本文整理匯總了Python中math.acos方法的典型用法代碼示例。如果您正苦於以下問題:Python math.acos方法的具體用法?Python math.acos怎麽用?Python math.acos使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在math的用法示例。


在下文中一共展示了math.acos方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_angle_diff

# 需要導入模塊: import math [as 別名]
# 或者: from math import acos [as 別名]
def get_angle_diff(self, target, result):
        size = target.size()
        sequence_length = size[1]
        all_averages = np.zeros((sequence_length)).astype(np.float)
        for seq_id in range(sequence_length):
            average = AverageMeter()
            for batch_id in range(size[0]):
                for imu_id in range(size[2]):
                    goal = Quaternion(target[batch_id, seq_id, imu_id])
                    out = Quaternion(result[batch_id, seq_id, imu_id])
                    acos = (2 * (np.dot(out.normalised.q, goal.normalised.q)**2)
                            - 1)
                    acos = round(acos, 6)
                    if acos > 1 or acos < -1:
                        pdb.set_trace()
                    radian = math.acos(acos)
                    average.update(radian)

            all_averages[seq_id] = (average.avg)

        return all_averages 
開發者ID:ehsanik,項目名稱:dogTorch,代碼行數:23,代碼來源:metrics.py

示例2: c2s

# 需要導入模塊: import math [as 別名]
# 或者: from math import acos [as 別名]
def c2s(self):
        R = self.dist(point(0, 0, 0))
        lg = math.atan(self.y / self.x)
        lat = acos(self.z / R)
        return (lg, lat, R)

    # ~ def transform(self,p1,p2):
    # ~ if isinstance(p2,point):
    # ~ v=vec(p1,p2)
    # ~ rot=v.angle()
    # ~ return self.transform(p1,rot)
    # ~ else:
    # ~ temp=self-p1
    # ~ rot=p2
    # ~ px=math.cos(rot)*temp.x+math.sin(rot)*temp.y
    # ~ py=-math.sin(rot)*temp.x+math.cos(rot)*temp.y
    # ~ return point(px,py) 
開發者ID:kamalshadi,項目名稱:Localization,代碼行數:19,代碼來源:geometry.py

示例3: map

# 需要導入模塊: import math [as 別名]
# 或者: from math import acos [as 別名]
def map(self, p, inv=False):
        # cartesian to lat/lon
        # if inv is true lat/lon to cartesian
        R = self.R
        if not inv:
            ed = R * (vec(p - self.c).norm())
            ed = point(ed.dx, ed.dy, ed.dz)
            lon = math.atan2(ed.y, ed.x)
            lat1 = math.acos(abs(ed.z) / R)
            if ed.z > 0:
                lat = math.pi / 2 - lat1
            else:
                lat = -(math.pi / 2 - lat1)
            return point(lon, lat) * 180 / math.pi
        if inv:
            p = p * math.pi / 180
            z = R * math.sin(p.y)
            y = R * math.cos(p.y) * math.sin(p.x)
            x = R * math.cos(p.y) * math.cos(p.x)
            return point(x, y, z) 
開發者ID:kamalshadi,項目名稱:Localization,代碼行數:22,代碼來源:geometry.py

示例4: theta_phi_to_dzeta_gamma

# 需要導入模塊: import math [as 別名]
# 或者: from math import acos [as 別名]
def theta_phi_to_dzeta_gamma(theta, phi, z):
    """Calculation of the angles dzeta and gamma."""
    dzeta = theta

    if ((math.cos(z) * math.cos(theta) + math.sin(z) * math.sin(theta) *
         math.cos(phi)) > 1 and (math.cos(z) * math.cos(theta) + math.sin(z) *
                                 math.sin(theta) * math.cos(phi) < 1.1)):
        gamma = 0
    elif math.cos(z) * math.cos(theta) + math.sin(z) * math.sin(theta) * \
            math.cos(phi) > 1.1:
        raise ValueError("error in calculation of gamma (angle between point and sun)")
    else:
        gamma = math.acos(math.cos(z) * math.cos(theta) + math.sin(z) *
                          math.sin(theta) * math.cos(phi))

    return dzeta, gamma 
開發者ID:ladybug-tools,項目名稱:honeybee,代碼行數:18,代碼來源:gendaylit.py

示例5: vector_angle_between

# 需要導入模塊: import math [as 別名]
# 或者: from math import acos [as 別名]
def vector_angle_between(vector1, vector2, **kwargs):
    """ Computes the angle between the two input vectors.

    If the keyword argument ``degrees`` is set to *True*, then the angle will be in degrees. Otherwise, it will be
    in radians. By default, ``degrees`` is set to *True*.

    :param vector1: vector
    :type vector1: list, tuple
    :param vector2: vector
    :type vector2: list, tuple
    :return: angle between the vectors
    :rtype: float
    """
    degrees = kwargs.get('degrees', True)
    magn1 = vector_magnitude(vector1)
    magn2 = vector_magnitude(vector2)
    acos_val = vector_dot(vector1, vector2) / (magn1 * magn2)
    angle_radians = math.acos(acos_val)
    if degrees:
        return math.degrees(angle_radians)
    else:
        return angle_radians 
開發者ID:orbingol,項目名稱:NURBS-Python,代碼行數:24,代碼來源:linalg.py

示例6: sunset_hour_angle

# 需要導入模塊: import math [as 別名]
# 或者: from math import acos [as 別名]
def sunset_hour_angle(latitude, sol_dec):
    """
    Calculate sunset hour angle (*Ws*) from latitude and solar
    declination.

    Based on FAO equation 25 in Allen et al (1998).

    :param latitude: Latitude [radians]. Note: *latitude* should be negative
        if it in the southern hemisphere, positive if in the northern
        hemisphere.
    :param sol_dec: Solar declination [radians]. Can be calculated using
        ``sol_dec()``.
    :return: Sunset hour angle [radians].
    :rtype: float
    """
    _check_latitude_rad(latitude)
    _check_sol_dec_rad(sol_dec)

    cos_sha = -math.tan(latitude) * math.tan(sol_dec)
    # If tmp is >= 1 there is no sunset, i.e. 24 hours of daylight
    # If tmp is <= 1 there is no sunrise, i.e. 24 hours of darkness
    # See http://www.itacanet.org/the-sun-as-a-source-of-energy/
    # part-3-calculating-solar-angles/
    # Domain of acos is -1 <= x <= 1 radians (this is not mentioned in FAO-56!)
    return math.acos(min(max(cos_sha, -1.0), 1.0)) 
開發者ID:woodcrafty,項目名稱:PyETo,代碼行數:27,代碼來源:fao.py

示例7: re

# 需要導入模塊: import math [as 別名]
# 或者: from math import acos [as 別名]
def re(R_est, R_gt):
  """Rotational Error.

  :param R_est: 3x3 ndarray with the estimated rotation matrix.
  :param R_gt: 3x3 ndarray with the ground-truth rotation matrix.
  :return: The calculated error.
  """
  assert (R_est.shape == R_gt.shape == (3, 3))
  error_cos = float(0.5 * (np.trace(R_est.dot(np.linalg.inv(R_gt))) - 1.0))

  # Avoid invalid values due to numerical errors.
  error_cos = min(1.0, max(-1.0, error_cos))

  error = math.acos(error_cos)
  error = 180.0 * error / np.pi  # Convert [rad] to [deg].
  return error 
開發者ID:thodan,項目名稱:bop_toolkit,代碼行數:18,代碼來源:pose_error.py

示例8: trig

# 需要導入模塊: import math [as 別名]
# 或者: from math import acos [as 別名]
def trig(a, b=' '):
    if is_num(a) and isinstance(b, int):

        funcs = [math.sin, math.cos, math.tan,
                 math.asin, math.acos, math.atan,
                 math.degrees, math.radians,
                 math.sinh, math.cosh, math.tanh,
                 math.asinh, math.acosh, math.atanh]

        return funcs[b](a)

    if is_lst(a):
        width = max(len(row) for row in a)
        padded_matrix = [list(row) + (width - len(row)) * [b] for row in a]
        transpose = list(zip(*padded_matrix))
        if all(isinstance(row, str) for row in a) and isinstance(b, str):
            normalizer = ''.join
        else:
            normalizer = list
        norm_trans = [normalizer(padded_row) for padded_row in transpose]
        return norm_trans
    return unknown_types(trig, ".t", a, b) 
開發者ID:isaacg1,項目名稱:pyth,代碼行數:24,代碼來源:macros.py

示例9: spherical_cartesian_to_polar

# 需要導入模塊: import math [as 別名]
# 或者: from math import acos [as 別名]
def spherical_cartesian_to_polar(vec):
    '''
    Return a parameterization of a vector of 3 coordinates:

    x = r sin u cos v
    y = r sin u sin v
    z = r cos u

    0 <= u <= pi
    -pi <= v <= pi

    Where u is the polar angle and v is the azimuth angle.

    @param vec: A vector of 3 cartesian coordinates.
    @return: (r, u, v)
    '''
    r = magnitude(vec)
    u = m.acos(vec[2] / r)
    v = m.atan2(vec[1], vec[0])

    nt.assert_allclose(vec[0], r * m.sin(u) * m.cos(v), rtol=1e-7, atol=1e-7)
    return (r, u, v) 
開發者ID:mhalushka,項目名稱:miRge,代碼行數:24,代碼來源:vector.py

示例10: ccw

# 需要導入模塊: import math [as 別名]
# 或者: from math import acos [as 別名]
def ccw(self,p0,p1,c):
        # Return 1 if p1 is counterclockwise from p0 with c as center; otherwise, return 0
        cx = c[0]
        cy = c[1]
        v0 = (p0.x-cx,p0.y-cy)
        v1 = (p1.x-cx,p1.y-cy)
        d0 = enorm(v0[0],v0[1])
        d1 = enorm(v1[0],v1[1])
        dp = (v0[0]*v1[0]) + (v0[1]*v1[1])
        if d0*d1 == 0:
            return 0
        q = clamp(dp/exclus(d0*d1),-1,1)
        ang = math.acos(q)
        if ang >= 0:
            return 1
        else:
            return 0 
開發者ID:brianbeauregard,項目名稱:Python-world-gen,代碼行數:19,代碼來源:src_towngen.py

示例11: check_order

# 需要導入模塊: import math [as 別名]
# 或者: from math import acos [as 別名]
def check_order(self, x1, y1, x2, y2, x3, y3, x4, y4):
        """
        makes sure that quadrilateral has order 1-2-4-3
        calculates angles around
        """

        def angle(v1, v2):
            v1_l = np.sqrt(v1[0] ** 2 + v1[1] ** 2)
            v2_l = np.sqrt(v2[0] ** 2 + v2[1] ** 2)
            return math.acos(np.dot(v1, v2) / (v1_l * v2_l))

        v21 = np.array([x2 - x1, y2 - y1])
        v42 = np.array([x4 - x2, y4 - y2])
        v34 = np.array([x3 - x4, y3 - y4])
        v13 = np.array([x1 - x3, y1 - y3])
        angle_1 = angle(v21, -v42)
        angle_2 = angle(v42, -v34)
        angle_3 = angle(v34, -v13)
        angle_4 = angle(v13, -v21)
        #print (angle_1 + angle_2 + angle_3 + angle_4)
        if abs((angle_1 + angle_2 + angle_3 + angle_4) - 2 * math.pi) < 1e-9:
            return x1, y1, x2, y2, x3, y3, x4, y4
        else:
            return x1, y1, x2, y2, x4, y4, x3, y3 
開發者ID:lefakkomies,項目名稱:pynomo,代碼行數:26,代碼來源:math_utilities.py

示例12: testAcosFunction

# 需要導入模塊: import math [as 別名]
# 或者: from math import acos [as 別名]
def testAcosFunction(self):
        ma5 = MovingAverage(5, 'close')
        holder = Acos(ma5)

        sampleClose = np.cos(self.sampleClose)

        for i, close in enumerate(sampleClose):
            data = {'close': close}
            ma5.push(data)
            holder.push(data)

            expected = math.acos(ma5.result())
            calculated = holder.result()
            self.assertAlmostEqual(calculated, expected, 12, "at index {0:d}\n"
                                                             "expected:   {1:f}\n"
                                                             "calculated: {2:f}".format(i, expected, calculated)) 
開發者ID:alpha-miner,項目名稱:Finance-Python,代碼行數:18,代碼來源:testAccumulatorsArithmetic.py

示例13: slerp

# 需要導入模塊: import math [as 別名]
# 或者: from math import acos [as 別名]
def slerp(quaternion1, quaternion2, amount):
    num = amount
    num2 = 0.0
    num3 = 0.0
    num4 = np.dot(quaternion1, quaternion2)
    flag = False
    if num4 < 0.0:
        flag = True
        num4 = -num4
    if num4 > 0.999999:
        num3 = 1.0 - num
        num2 = -num if flag else num
    else:
        num5 = math.acos(num4)
        num6 = 1.0 / math.sin(num5)
        num3 = math.sin((1.0 - num) * num5) * num6
        num2 = (-math.sin(num * num5) * num6) if flag else (math.sin(num * num5) * num6)
    return (num3 * quaternion1) + (num2 * quaternion2) 
開發者ID:ubuntunux,項目名稱:PyEngine3D,代碼行數:20,代碼來源:Transform.py

示例14: quat_slerp

# 需要導入模塊: import math [as 別名]
# 或者: from math import acos [as 別名]
def quat_slerp(quat0, quat1, fraction, spin=0, shortestpath=True):
    """Return spherical linear interpolation between two quaternions.
    >>> q0 = random_quat()
    >>> q1 = random_quat()
    >>> q = quat_slerp(q0, q1, 0.0)
    >>> np.allclose(q, q0)
    True
    >>> q = quat_slerp(q0, q1, 1.0, 1)
    >>> np.allclose(q, q1)
    True
    >>> q = quat_slerp(q0, q1, 0.5)
    >>> angle = math.acos(np.dot(q0, q))
    >>> np.allclose(2.0, math.acos(np.dot(q0, q1)) / angle) or \
        np.allclose(2.0, math.acos(-np.dot(q0, q1)) / angle)
    True
    """
    q0 = unit_vector(quat0[:4])
    q1 = unit_vector(quat1[:4])
    if fraction == 0.0:
        return q0
    elif fraction == 1.0:
        return q1
    d = np.dot(q0, q1)
    if abs(abs(d) - 1.0) < _EPS:
        return q0
    if shortestpath and d < 0.0:
        # invert rotation
        d = -d
        q1 *= -1.0
    angle = math.acos(d) + spin * math.pi
    if abs(angle) < _EPS:
        return q0
    isin = 1.0 / math.sin(angle)
    q0 *= math.sin((1.0 - fraction) * angle) * isin
    q1 *= math.sin(fraction * angle) * isin
    q0 += q1
    return q0 
開發者ID:StanfordVL,項目名稱:robosuite,代碼行數:39,代碼來源:transform_utils.py

示例15: getAngle

# 需要導入模塊: import math [as 別名]
# 或者: from math import acos [as 別名]
def getAngle(Ps, Pt, DD):
    
    Q = np.hstack((Ps, scipy.linalg.null_space(Ps.T)))
    dim = Pt.shape[1]
    QPt = Q.T @ Pt
    A, B = QPt[:dim, :], QPt[dim:, :]
    U,V,X,C,S = gsvd(A, B)
    alpha = np.zeros([1, DD])
    for i in range(DD):
        alpha[0][i] = math.sin(np.real(math.acos(C[i][i]*math.pi/180)))
    
    return alpha 
開發者ID:jindongwang,項目名稱:transferlearning,代碼行數:14,代碼來源:intra_alignment.py


注:本文中的math.acos方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。