本文整理匯總了Python中maskrcnn_benchmark.config.cfg.merge_from_file方法的典型用法代碼示例。如果您正苦於以下問題:Python cfg.merge_from_file方法的具體用法?Python cfg.merge_from_file怎麽用?Python cfg.merge_from_file使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類maskrcnn_benchmark.config.cfg
的用法示例。
在下文中一共展示了cfg.merge_from_file方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from maskrcnn_benchmark.config import cfg [as 別名]
# 或者: from maskrcnn_benchmark.config.cfg import merge_from_file [as 別名]
def main():
parser=argparse.ArgumentParser()
parser.add_argument('-r','--refresh',action='store_true')
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
args=parser.parse_args()
refresh=args.refresh
t = time.time()
cfg.merge_from_file(args.config_file)
cfg.OUTPUT_DIR = config.log_dir
cfg.freeze()
trainer=EvolutionTrainer(cfg,refresh=refresh)
trainer.train()
print('total searching time = {:.2f} hours'.format((time.time()-t)/3600))
示例2: __init__
# 需要導入模塊: from maskrcnn_benchmark.config import cfg [as 別名]
# 或者: from maskrcnn_benchmark.config.cfg import merge_from_file [as 別名]
def __init__(
self,
region_type,
ground_level,
ground_removal_th,
use_maskrcnn,
city_name,
min_point_num,
dbscan_eps,
calib_data,
path_debug_output,
ground_removal_method,
dataset_name,
path_rcnn_config="../mask_rcnn/models/e2e_mask_rcnn_R_50_FPN_1x.yaml",
):
self.region_type = region_type
self.ground_level = ground_level
self.ground_removal_th = ground_removal_th
self.use_maskrcnn = use_maskrcnn
self.city_name = city_name
self.min_point_num = min_point_num
self.dbscan_eps = dbscan_eps
self.calib_data = calib_data
self.path_debug_output = path_debug_output
self.ground_removal_method = ground_removal_method
self.dataset_name = dataset_name
if use_maskrcnn:
cfg.merge_from_file(path_rcnn_config)
cfg.freeze()
# using setting in official demo
coco_demo_detector = COCODemo(
cfg,
confidence_threshold=0.7,
min_image_size=224,
)
self.mask_rcnn_detector = coco_demo_detector
示例3: main
# 需要導入模塊: from maskrcnn_benchmark.config import cfg [as 別名]
# 或者: from maskrcnn_benchmark.config.cfg import merge_from_file [as 別名]
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
run_test(cfg, model, args.distributed)
示例4: main
# 需要導入模塊: from maskrcnn_benchmark.config import cfg [as 別名]
# 或者: from maskrcnn_benchmark.config.cfg import merge_from_file [as 別名]
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="../configs/e2e_r2cnn_R_50_FPN_1x.yaml",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
default=True,
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
run_test(cfg, model, args.distributed)
示例5: __init__
# 需要導入模塊: from maskrcnn_benchmark.config import cfg [as 別名]
# 或者: from maskrcnn_benchmark.config.cfg import merge_from_file [as 別名]
def __init__(
self,
model,
CATEGORIES,
dataset,
confidence_threshold=0.5,
show_mask_heatmaps=False,
masks_per_dim=2,
min_image_size=224,
):
if model == 'faster':
config_file = "faster-retina/configs/e2e_faster_rcnn_R_50_FPN_1x_{}_test.yaml".format(dataset)
if model == 'retinanet':
config_file = 'faster-retina/configs/retinanet_R-50-FPN_1x-{}.yaml'.format(dataset)
if model == 'maskrcnn':
config_file = 'faster-retina/configs/e2e_mask_rcnn_R_50_FPN_1x-{}.yaml'.format(dataset)
cfg.merge_from_file(config_file)
self.cfg = cfg.clone()
self.CATEGORIES = CATEGORIES
self.model = build_detection_model(cfg)
self.model.eval()
self.device = torch.device('cuda')
self.model.to(self.device)
self.min_image_size = min_image_size
self.feat_extractor = FeatureExtractorFromBoxes(self.model)
save_dir = cfg.OUTPUT_DIR
checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
self.transforms = self.build_transform()
mask_threshold = -1 if show_mask_heatmaps else 0.5
self.masker = Masker(threshold=mask_threshold, padding=1)
# used to make colors for each class
self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
self.cpu_device = torch.device("cpu")
self.confidence_threshold = confidence_threshold
self.show_mask_heatmaps = show_mask_heatmaps
self.masks_per_dim = masks_per_dim
示例6: main
# 需要導入模塊: from maskrcnn_benchmark.config import cfg [as 別名]
# 或者: from maskrcnn_benchmark.config.cfg import merge_from_file [as 別名]
def main():
parser=argparse.ArgumentParser()
# parser.add_argument('-b', '--batch-size', type=int, default=128)
parser.add_argument('-p', '--process', type=int, default=1)
parser.add_argument('-r', '--reset', action='store_true')
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
parser.add_argument("--master_addr", default="127.0.0.1", type=str,
help="Master node (rank 0)'s address, should be either "
"the IP address or the hostname of node 0, for "
"single node multi-proc training, the "
"--master_addr can simply be 127.0.0.1")
parser.add_argument("--master_port", default=29500, type=int,
help="Master node (rank 0)'s free port that needs to "
"be used for communciation during distributed "
"training")
args=parser.parse_args()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
ngpus_per_node = torch.cuda.device_count()
os.environ["WORLD_SIZE"] = str(ngpus_per_node)
os.environ["MASTER_ADDR"] = args.master_addr
os.environ["MASTER_PORT"] = str(args.master_port)
cfg.SOLVER.IMS_PER_BATCH = 8
cfg.SOLVER.MAX_ITER = 88888888
cfg.TEST.IMS_PER_BATCH = ngpus_per_node
cfg.OUTPUT_DIR = config.log_dir
cfg.freeze()
train_server = TestServer(ngpus_per_node)
train_server.run(args.process, reset_pipe=args.reset)
示例7: main
# 需要導入模塊: from maskrcnn_benchmark.config import cfg [as 別名]
# 或者: from maskrcnn_benchmark.config.cfg import merge_from_file [as 別名]
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="../configs/rrpn/e2e_rrpn_X_101_32x8d_FPN_1x_DOTA.yaml",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
test(cfg, model, args.distributed)
示例8: main
# 需要導入模塊: from maskrcnn_benchmark.config import cfg [as 別名]
# 或者: from maskrcnn_benchmark.config.cfg import merge_from_file [as 別名]
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Inference")
parser.add_argument(
"--config-file",
default="/private/home/fmassa/github/detectron.pytorch_v2/configs/e2e_faster_rcnn_R_50_C4_1x_caffe2.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument(
"--checkpoint", default="", metavar="FILE", help="path to checkpoint file"
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
distributed = (
int(os.environ["WORLD_SIZE"]) > 1 if "WORLD_SIZE" in os.environ else False
)
if distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
save_dir = ""
logger = setup_logger("maskrcnn_benchmark", save_dir, args.local_rank)
logger.info(cfg)
model = build_detection_model(cfg)
model.to(cfg.MODEL.DEVICE)
load_from_checkpoint(cfg, model, args.checkpoint)
data_loader_val = make_data_loader(cfg, is_train=False, is_distributed=distributed)
iou_types = ("bbox",)
if cfg.MODEL.MASK_ON:
iou_types = iou_types + ("segm",)
inference(model, data_loader_val, iou_types=iou_types, box_only=cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE)
示例9: main
# 需要導入模塊: from maskrcnn_benchmark.config import cfg [as 別名]
# 或者: from maskrcnn_benchmark.config.cfg import merge_from_file [as 別名]
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="configs/free_anchor_R-50-FPN_8gpu_1x.yaml",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank % torch.cuda.device_count())
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
test(cfg, model, args.distributed)
示例10: main
# 需要導入模塊: from maskrcnn_benchmark.config import cfg [as 別名]
# 或者: from maskrcnn_benchmark.config.cfg import merge_from_file [as 別名]
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.deprecated.init_process_group(
backend="nccl", init_method="env://"
)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
test(cfg, model, args.distributed)
示例11: main
# 需要導入模塊: from maskrcnn_benchmark.config import cfg [as 別名]
# 或者: from maskrcnn_benchmark.config.cfg import merge_from_file [as 別名]
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
test(cfg, model, args.distributed)
示例12: main
# 需要導入模塊: from maskrcnn_benchmark.config import cfg [as 別名]
# 或者: from maskrcnn_benchmark.config.cfg import merge_from_file [as 別名]
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
logger.info("Arch Decoder: {}".format(cfg.SEARCH.DECODER.CONFIG))
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
run_test(cfg, model, args.distributed)