本文整理匯總了Python中loompy.create方法的典型用法代碼示例。如果您正苦於以下問題:Python loompy.create方法的具體用法?Python loompy.create怎麽用?Python loompy.create使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類loompy
的用法示例。
在下文中一共展示了loompy.create方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: export_regulons
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import create [as 別名]
def export_regulons(regulons: Sequence[Regulon], fname: str) -> None:
"""
Export regulons as GraphML.
:param regulons: The sequence of regulons to export.
:param fname: The name of the file to create.
"""
graph = nx.DiGraph()
for regulon in regulons:
src_name = regulon.transcription_factor
graph.add_node(src_name, group='transcription_factor')
edge_type = 'activating' if 'activating' in regulon.context else 'inhibiting'
node_type = 'activated_target' if 'activating' in regulon.context else 'inhibited_target'
for dst_name, edge_strength in regulon.gene2weight.items():
graph.add_node(dst_name, group=node_type, **regulon.context)
graph.add_edge(src_name, dst_name, weight=edge_strength, interaction=edge_type, **regulon.context)
nx.readwrite.write_graphml(graph, fname)
示例2: save_df_as_loom
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import create [as 別名]
def save_df_as_loom(df: pd.DataFrame, fname: str) -> None:
"""
Save pandas dataframe as single layer loom file. Can be used to save expression matrix or AUC value matrix
as binary loom file.
:param df: The 2-dimensional dataframe (rows = cells x columns = genes).
:param fname: The name of the loom file to create.
"""
assert df.ndim == 2
# The orientation of the loom file is always:
# - Columns represent cells or aggregates of cells
# - Rows represent genes
column_attrs = { ATTRIBUTE_NAME_CELL_IDENTIFIER: df.index.values.astype('str'), }
row_attrs = { ATTRIBUTE_NAME_GENE: df.columns.values.astype('str'), }
lp.create(filename=fname,
layers=df.T.values,
row_attrs=row_attrs,
col_attrs=column_attrs)
示例3: save_loom
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import create [as 別名]
def save_loom(self, filename: str) -> None:
"""Save an ExpressionMatrix as a loom file
Parameters
----------
filename : str
Name of loom file
"""
import loompy
row_attrs = {k: self[Features.CELLS][k].values for k in self[Features.CELLS].coords}
col_attrs = {k: self[Features.GENES][k].values for k in self[Features.GENES].coords}
loompy.create(filename, self.data, row_attrs, col_attrs)
示例4: create_append
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import create [as 別名]
def create_append(filename: str, layers: Union[np.ndarray, Dict[str, np.ndarray], loompy.LayerManager], row_attrs: Dict[str, np.ndarray], col_attrs: Dict[str, np.ndarray], *, file_attrs: Dict[str, str] = None, fill_values: Dict[str, np.ndarray] = None) -> None:
"""
**DEPRECATED** - Use `new` instead; see https://github.com/linnarsson-lab/loompy/issues/42
"""
deprecated("'create_append' is deprecated. See https://github.com/linnarsson-lab/loompy/issues/42")
if os.path.exists(filename):
with connect(filename) as ds:
ds.add_columns(layers, col_attrs, fill_values=fill_values)
else:
create(filename, layers, row_attrs, col_attrs, file_attrs=file_attrs)
示例5: test_file_with_empty_col_attrs_is_valid
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import create [as 別名]
def test_file_with_empty_col_attrs_is_valid(self) -> None:
f = NamedTemporaryFile(suffix=".loom")
f.close()
loompy.create(f.name, np.zeros((5, 5)), {}, {})
try:
self.assertTrue(
LoomValidator().validate(f.name),
"File with empty col_attrs or row_attrs should be valid"
)
finally:
os.remove(f.name)
示例6: setUp
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import create [as 別名]
def setUp(self) -> None:
self.file = NamedTemporaryFile(suffix=".loom")
self.file.close()
loompy.create(
self.file.name,
np.random.random((5, 5)),
row_attrs={
"key": np.fromiter(range(5), dtype=np.int)
},
col_attrs={
"key": np.fromiter(range(5), dtype=np.int)
})
示例7: doGeneSetEnrichment
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import create [as 別名]
def doGeneSetEnrichment(self, request, context):
gene_set_file_path = os.path.join(self.dfh.get_gene_sets_dir(), request.geneSetFilePath)
loom = self.lfh.get_loom(loom_file_path=request.loomFilePath)
gse = _gse.GeneSetEnrichment(
scope=self, method="AUCell", loom=loom, gene_set_file_path=gene_set_file_path, annotation=""
)
# Running AUCell...
yield gse.update_state(step=-1, status_code=200, status_message="Running AUCell...", values=None)
time.sleep(1)
# Reading gene set...
yield gse.update_state(step=0, status_code=200, status_message="Reading the gene set...", values=None)
with open(gse.gene_set_file_path, "r") as f:
# Skip first line because it contains the name of the signature
gs = GeneSignature(
name="Gene Signature #1", gene2weight=[line.strip() for idx, line in enumerate(f) if idx > 0]
)
time.sleep(1)
if not gse.has_AUCell_rankings():
# Creating the matrix as DataFrame...
yield gse.update_state(step=1, status_code=200, status_message="Creating the matrix...", values=None)
loom = self.lfh.get_loom(loom_file_path=request.loomFilePath)
dgem = np.transpose(loom.get_connection()[:, :])
ex_mtx = pd.DataFrame(data=dgem, index=loom.get_ca_attr_by_name("CellID"), columns=loom.get_genes())
# Creating the rankings...
start_time = time.time()
yield gse.update_state(step=2.1, status_code=200, status_message="Creating the rankings...", values=None)
rnk_mtx = create_rankings(ex_mtx=ex_mtx)
# Saving the rankings...
yield gse.update_state(step=2.2, status_code=200, status_message="Saving the rankings...", values=None)
lp.create(
gse.get_AUCell_ranking_filepath(),
rnk_mtx.as_matrix(),
{"CellID": loom.get_cell_ids()},
{"Gene": loom.get_genes()},
)
logger.debug("{0:.5f} seconds elapsed generating rankings ---".format(time.time() - start_time))
else:
# Load the rankings...
yield gse.update_state(step=2, status_code=200, status_message="Rankings exists: loading...", values=None)
rnk_loom = self.lfh.get_loom_connection(gse.get_AUCell_ranking_filepath())
rnk_mtx = pd.DataFrame(data=rnk_loom[:, :], index=rnk_loom.ra.CellID, columns=rnk_loom.ca.Gene)
# Calculating AUCell enrichment...
start_time = time.time()
yield gse.update_state(step=3, status_code=200, status_message="Calculating AUCell enrichment...", values=None)
aucs = enrichment(rnk_mtx, gs).loc[:, "AUC"].values
logger.debug("{0:.5f} seconds elapsed calculating AUC ---".format(time.time() - start_time))
yield gse.update_state(
step=4, status_code=200, status_message=gse.get_method() + " enrichment done!", values=aucs
)
示例8: create_from_cellranger
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import create [as 別名]
def create_from_cellranger(indir: str, outdir: str = None, genome: str = None) -> str:
"""
Create a .loom file from 10X Genomics cellranger output
Args:
indir (str): path to the cellranger output folder (the one that contains 'outs')
outdir (str): output folder wher the new loom file should be saved (default to indir)
genome (str): genome build to load (e.g. 'mm10'; if None, determine species from outs folder)
Returns:
path (str): Full path to the created loom file.
Remarks:
The resulting file will be named ``{sampleID}.loom``, where the sampleID is the one given by cellranger.
"""
if outdir is None:
outdir = indir
sampleid = os.path.split(os.path.abspath(indir))[-1]
matrix_folder = os.path.join(indir, 'outs', 'filtered_gene_bc_matrices')
if os.path.exists(matrix_folder):
if genome is None:
genome = [f for f in os.listdir(matrix_folder) if not f.startswith(".")][0]
matrix_folder = os.path.join(matrix_folder, genome)
matrix = mmread(os.path.join(matrix_folder, "matrix.mtx")).todense()
genelines = open(os.path.join(matrix_folder, "genes.tsv"), "r").readlines()
bclines = open(os.path.join(matrix_folder, "barcodes.tsv"), "r").readlines()
else: # cellranger V3 file locations
if genome is None:
genome = "" # Genome is not visible from V3 folder
matrix_folder = os.path.join(indir, 'outs', 'filtered_feature_bc_matrix')
matrix = mmread(os.path.join(matrix_folder, "matrix.mtx.gz")).todense()
genelines = [l.decode() for l in gzip.open(os.path.join(matrix_folder, "features.tsv.gz"), "r").readlines()]
bclines = [l.decode() for l in gzip.open(os.path.join(matrix_folder, "barcodes.tsv.gz"), "r").readlines()]
accession = np.array([x.split("\t")[0] for x in genelines]).astype("str")
gene = np.array([x.split("\t")[1].strip() for x in genelines]).astype("str")
cellids = np.array([sampleid + ":" + x.strip() for x in bclines]).astype("str")
col_attrs = {"CellID": cellids}
row_attrs = {"Accession": accession, "Gene": gene}
tsne_file = os.path.join(indir, "outs", "analysis", "tsne", "projection.csv")
# In cellranger V2 the file moved one level deeper
if not os.path.exists(tsne_file):
tsne_file = os.path.join(indir, "outs", "analysis", "tsne", "2_components", "projection.csv")
if os.path.exists(tsne_file):
tsne = np.loadtxt(tsne_file, usecols=(1, 2), delimiter=',', skiprows=1)
col_attrs["X"] = tsne[:, 0].astype('float32')
col_attrs["Y"] = tsne[:, 1].astype('float32')
clusters_file = os.path.join(indir, "outs", "analysis", "clustering", "graphclust", "clusters.csv")
if os.path.exists(clusters_file):
labels = np.loadtxt(clusters_file, usecols=(1, ), delimiter=',', skiprows=1)
col_attrs["ClusterID"] = labels.astype('int') - 1
path = os.path.join(outdir, sampleid + ".loom")
create(path, matrix, row_attrs, col_attrs, file_attrs={"Genome": genome})
return path
示例9: create_from_matrix_market
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import create [as 別名]
def create_from_matrix_market(out_file: str, sample_id: str, layer_paths: Dict[str, str], row_metadata_path: str, column_metadata_path: str, delim: str = "\t", skip_row_headers: bool = False, skip_colums_headers: bool = False, file_attrs: Dict[str, str] = None, matrix_transposed: bool = False) -> None:
"""
Create a .loom file from .mtx matrix market format
Args:
out_file: path to the newly created .loom file (will be overwritten if it exists)
sample_id: string to use as prefix for cell IDs
layer_paths: dict mapping layer names to paths to the corresponding matrix file (usually with .mtx extension)
row_metadata_path: path to the row (usually genes) metadata file
column_metadata_path: path to the column (usually cells) metadata file
delim: delimiter used for metadata (default: "\t")
skip_row_headers: if true, skip first line in rows metadata file
skip_column_headers: if true, skip first line in columns metadata file
file_attrs: dict of global file attributes, or None
matrix_transposed: if true, the main matrix is transposed
Remarks:
layer_paths should typically map the empty string to a matrix market file: {"": "path/to/filename.mtx"}.
To create a multilayer loom file, map multiple named layers {"": "path/to/layer1.mtx", "layer2": "path/to/layer2.mtx"}
Note: the created file MUST have a main layer named "". If no such layer is given, BUT all given layers are the same
datatype, then a main layer will be created as the sum of the other layers. For example, {"spliced": "spliced.mtx", "unspliced": "unspliced.mtx"}
will create three layers, "", "spliced", and "unspliced", where "" is the sum of the other two.
"""
layers: Dict[str, Union[np.ndarray, scipy.sparse.coo_matrix]] = {}
for name, path in layer_paths.items():
matrix = mmread(path)
if matrix_transposed:
matrix = matrix.T
layers[name] = matrix
if "" not in layers:
main_matrix = None
for name, matrix in layers.items():
if main_matrix is None:
main_matrix = matrix.copy()
else:
main_matrix = main_matrix + matrix
layers[""] = main_matrix
genelines = open(row_metadata_path, "r").readlines()
bclines = open(column_metadata_path, "r").readlines()
accession = np.array([x.split("\t")[0] for x in genelines]).astype("str")
if(len(genelines[0].split("\t")) > 1):
gene = np.array([x.split("\t")[1].strip() for x in genelines]).astype("str")
row_attrs = {"Accession": accession, "Gene": gene}
else:
row_attrs = {"Accession": accession}
cellids = np.array([sample_id + ":" + x.strip() for x in bclines]).astype("str")
col_attrs = {"CellID": cellids}
create(out_file, layers[""], row_attrs, col_attrs, file_attrs=file_attrs)
if len(layers) > 1:
with loompy.connect(out_file) as ds:
for name, layer in layers.items():
if name == "":
continue
ds[name] = layer