本文整理匯總了Python中loompy.connect方法的典型用法代碼示例。如果您正苦於以下問題:Python loompy.connect方法的具體用法?Python loompy.connect怎麽用?Python loompy.connect使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類loompy
的用法示例。
在下文中一共展示了loompy.connect方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_exp_matrix_as_loom
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import connect [as 別名]
def load_exp_matrix_as_loom(fname,
return_sparse=False,
attribute_name_cell_id: str = ATTRIBUTE_NAME_CELL_IDENTIFIER,
attribute_name_gene: str = ATTRIBUTE_NAME_GENE) -> pd.DataFrame:
"""
Load expression matrix from loom file.
:param fname: The name of the loom file to load.
:return: A 2-dimensional dataframe (rows = cells x columns = genes).
"""
if return_sparse:
with lp.connect(fname,mode='r',validate=False) as ds:
ex_mtx = ds.layers[''].sparse().T.tocsc()
genes = pd.Series(ds.ra[attribute_name_gene])
cells = ds.ca[attribute_name_cell_id]
return ex_mtx, genes, cells
else:
with lp.connect(fname,mode='r',validate=False) as ds:
# The orientation of the loom file is always:
# - Columns represent cells or aggregates of cells
# - Rows represent genes
return pd.DataFrame(data=ds[:, :],
index=ds.ra[attribute_name_gene],
columns=ds.ca[attribute_name_cell_id]).T
示例2: __init__
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import connect [as 別名]
def __init__(self, loom_filepath: str) -> None:
self.loom_filepath = loom_filepath
ds = loompy.connect(self.loom_filepath)
self.S = ds.layer["spliced"][:, :]
self.U = ds.layer["unspliced"][:, :]
self.A = ds.layer["ambiguous"][:, :]
self.ca = dict(ds.col_attrs.items())
self.ra = dict(ds.row_attrs.items())
ds.close()
self.initial_cell_size = self.S.sum(0)
self.initial_Ucell_size = self.U.sum(0)
try:
if np.mean(self.ca["_Valid"]) < 1:
logging.warn(f"fraction of _Valid cells is {np.mean(self.ca['_Valid'])} but all will be taken in consideration")
except KeyError:
pass
# logging.debug("The file did not specify the _Valid column attribute")
示例3: __enter__
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import connect [as 別名]
def __enter__(self) -> Any:
"""
Context manager, to support "with loompy.connect(..)" construct
"""
return self
示例4: load_loom_file
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import connect [as 別名]
def load_loom_file(self, partial_md5_hash: str, file_path: str, abs_file_path: str, mode: str = "r"):
try:
loom_connection = lp.connect(abs_file_path, mode=mode, validate=False)
except KeyError as e:
logger.error(e)
os.remove(file_path)
logger.warning(f"Deleting malformed loom {file_path}")
return None
return self.add_loom(
partial_md5_hash=partial_md5_hash,
file_path=file_path,
abs_file_path=abs_file_path,
loom_connection=loom_connection,
)
示例5: reload_raw
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import connect [as 別名]
def reload_raw(self, substitute: bool=False) -> None:
"""Reload raw data as it was before filtering steps
Arguments
---------
substitute: bool=False
if True `S, U, A, ca, ra` will be all overwritten
if False `S, U, A, ca, ra` will be loaded separately as `raw_S, raw_U, raw_A, raw_ca, raw_ra`
"""
if substitute:
ds = loompy.connect(self.loom_filepath)
self.S = ds.layer["spliced"][:, :]
self.U = ds.layer["unspliced"][:, :]
self.A = ds.layer["ambiguous"][:, :]
self.initial_cell_size = self.S.sum(0)
self.initial_Ucell_size = self.U.sum(0)
self.ca = dict(ds.col_attrs.items())
self.ra = dict(ds.row_attrs.items())
ds.close()
else:
ds = loompy.connect(self.loom_filepath)
self.raw_S = ds.layer["spliced"][:, :]
self.raw_U = ds.layer["unspliced"][:, :]
self.raw_A = ds.layer["ambiguous"][:, :]
self.raw_initial_cell_size = self.raw_S.sum(0)
self.raw_initial_Ucell_size = self.raw_U.sum(0)
self.raw_ca = dict(ds.col_attrs.items())
self.raw_ra = dict(ds.row_attrs.items())
ds.close()
示例6: load_loom
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import connect [as 別名]
def load_loom(filename):
"""Load data from a loom file
Parameters
----------
filename: str
file to load
Returns
-------
coo : coo_matrix
cell x gene sparse count matrix
genes : Dataframe
Dataframe of gene attributes. Attributes are ordered so
Accession and Gene are the first columns, if those attributs are
present
"""
import loompy
# load the loom file
with loompy.connect(filename) as ds:
loom_genes = pd.DataFrame(dict(ds.ra.items()))
loom_coo = ds.sparse().T
# order gene attributes so Accession and Gene are the first two columns,
# if they are present
first_cols = []
for colname in ['Accession', 'Gene']:
if colname in loom_genes.columns:
first_cols.append(colname)
rest_cols = loom_genes.columns.difference(first_cols).tolist()
loom_genes = loom_genes[first_cols + rest_cols]
return loom_coo,loom_genes
示例7: validate
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import connect [as 別名]
def validate(self, path: str, strictness: str = "speconly") -> bool:
"""
Validate a file for conformance to the Loom specification
Args:
path: Full path to the file to be validated
strictness: "speconly" or "conventions"
Remarks:
In "speconly" mode, conformance is assessed relative to the file format specification
at http://linnarssonlab.org/loompy/format/. In "conventions" mode, conformance is additionally
assessed relative to attribute name and data type conventions given at http://linnarssonlab.org/loompy/conventions/.
"""
valid1 = True
with h5py.File(path, mode="r") as f:
if self.version == None:
self.version = get_loom_spec_version(f)
valid1 = self.validate_spec(f)
if not valid1:
self.errors.append("For help, see http://linnarssonlab.org/loompy/format/")
valid2 = True
if strictness == "conventions":
with loompy.connect(path, mode="r") as ds:
valid2 = self.validate_conventions(ds)
if not valid2:
self.errors.append("For help, see http://linnarssonlab.org/loompy/conventions/")
return valid1 and valid2
示例8: __exit__
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import connect [as 別名]
def __exit__(self, type: Any, value: Any, traceback: Any) -> None:
"""
Context manager, to support "with loompy.connect(..)" construct
"""
if self.shape[0] == 0 or self.shape[1] == 0:
raise ValueError("Newly created loom file must be filled with data before leaving the 'with' statement")
if not self.closed:
self.close(True)
示例9: create_append
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import connect [as 別名]
def create_append(filename: str, layers: Union[np.ndarray, Dict[str, np.ndarray], loompy.LayerManager], row_attrs: Dict[str, np.ndarray], col_attrs: Dict[str, np.ndarray], *, file_attrs: Dict[str, str] = None, fill_values: Dict[str, np.ndarray] = None) -> None:
"""
**DEPRECATED** - Use `new` instead; see https://github.com/linnarsson-lab/loompy/issues/42
"""
deprecated("'create_append' is deprecated. See https://github.com/linnarsson-lab/loompy/issues/42")
if os.path.exists(filename):
with connect(filename) as ds:
ds.add_columns(layers, col_attrs, fill_values=fill_values)
else:
create(filename, layers, row_attrs, col_attrs, file_attrs=file_attrs)
示例10: new
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import connect [as 別名]
def new(filename: str, *, file_attrs: Optional[Dict[str, str]] = None) -> LoomConnection:
"""
Create an empty Loom file, and return it as a context manager.
"""
if filename.startswith("~/"):
filename = os.path.expanduser(filename)
if file_attrs is None:
file_attrs = {}
# Create the file (empty).
# Yes, this might cause an exception, which we prefer to send to the caller
f = h5py.File(name=filename, mode='w')
f.create_group('/attrs') # v3.0.0
f.create_group('/layers')
f.create_group('/row_attrs')
f.create_group('/col_attrs')
f.create_group('/row_graphs')
f.create_group('/col_graphs')
f.flush()
f.close()
ds = connect(filename, validate=False)
for vals in file_attrs:
if file_attrs[vals] is None:
ds.attrs[vals] = "None"
else:
ds.attrs[vals] = file_attrs[vals]
# store creation date
ds.attrs['CreationDate'] = timestamp()
ds.attrs["LOOM_SPEC_VERSION"] = loompy.loom_spec_version
return ds
示例11: connect
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import connect [as 別名]
def connect(filename: str, mode: str = 'r+', *, validate: bool = True, spec_version: str = "3.0.0") -> LoomConnection:
"""
Establish a connection to a .loom file.
Args:
filename: Path to the Loom file to open
mode: Read/write mode, 'r+' (read/write) or 'r' (read-only), defaults to 'r+'
validate: Validate the file structure against the Loom file format specification
spec_version: The loom file spec version to validate against (e.g. "2.0.1" or "old")
Returns:
A LoomConnection instance.
Remarks:
This function should typically be used as a context manager (i.e. inside a ``with``-block):
.. highlight:: python
.. code-block:: python
import loompy
with loompy.connect("mydata.loom") as ds:
print(ds.ca.keys())
This ensures that the file will be closed automatically when the context block ends
Note: if validation is requested, an exception is raised if validation fails.
"""
return LoomConnection(filename, mode, validate=validate)
示例12: test_scan_with_default_ordering
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import connect [as 別名]
def test_scan_with_default_ordering(self) -> None:
with loompy.connect(self.file.name) as ds:
for axis in [0, 1]:
_, _, view = next(iter(ds.scan(axis=axis)))
no_ordering_data = view[:, :]
_, _, view = next(iter(ds.scan(axis=axis, key="key")))
original_ordering_data = view[:, :]
np.testing.assert_almost_equal(no_ordering_data, original_ordering_data,
err_msg="Default ordering should same as in file")
示例13: test_new
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import connect [as 別名]
def test_new() -> None:
with loompy.new("test.loom") as ds:
m = np.zeros((20, 100))
ra = {"Gene": [x for x in "ABCDEFGHILJKLMNOPQRS"]}
ca = {"Cell": np.arange(100)}
ds.add_columns(m, ca, row_attrs=ra)
ds.add_columns(m, ca, row_attrs=ra)
with loompy.connect("test.loom") as ds:
assert(ds.shape == (20, 200))
示例14: test_sparse
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import connect [as 別名]
def test_sparse() -> None:
G = 1000
C = 100
S = sparse.eye(G, C)
loompy.create('test.loom', S, {'g_id': np.arange(G)}, {'c_id': np.arange(C)})
with loompy.connect("test.loom") as ds:
ds["layer"] = S
assert(np.all(ds[:, :] == S.toarray()))
assert(np.all(ds.sparse().data == S.tocoo().data))
assert(np.all(ds.layers["layer"][:, :] == S.toarray()))
assert(np.all(ds.layers["layer"].sparse().data == S.tocoo().data))
示例15: populate
# 需要導入模塊: import loompy [as 別名]
# 或者: from loompy import connect [as 別名]
def populate(self):
logger.info("Loading smFISH dataset")
ds = loompy.connect(os.path.join(self.save_path, self.filenames[0]))
gene_names = ds.ra["Gene"].astype(np.str)
labels = ds.ca["ClusterID"].reshape(-1, 1)
tmp_cell_types = np.asarray(ds.ca["ClusterName"])
u_labels, u_index = np.unique(labels.ravel(), return_index=True)
cell_types = ["" for _ in range(max(u_labels) + 1)]
for i, index in zip(u_labels, u_index):
cell_types[i] = tmp_cell_types[index]
cell_types = np.asarray(cell_types, dtype=np.str)
x_coord, y_coord = ds.ca["X"], ds.ca["Y"]
x_coord = x_coord.reshape((-1, 1))
y_coord = y_coord.reshape((-1, 1))
data = ds[:, :].T
self.populate_from_data(
X=data,
labels=labels,
gene_names=gene_names,
cell_types=cell_types,
cell_attributes_dict={"x_coord": x_coord, "y_coord": y_coord},
remap_attributes=False,
)
major_clusters = dict(
[
((3, 2), "Astrocytes"),
((7, 26), "Endothelials"),
((18, 17, 14, 19, 15, 16, 20), "Inhibitory"),
((29, 28), "Microglias"),
((32, 33, 30, 22, 21), "Oligodendrocytes"),
((9, 8, 10, 6, 5, 4, 12, 1, 13), "Pyramidals"),
]
)
if self.use_high_level_cluster:
self.map_cell_types(major_clusters)
self.filter_cell_types(
[
"Astrocytes",
"Endothelials",
"Inhibitory",
"Microglias",
"Oligodendrocytes",
"Pyramidals",
]
)
self.remap_categorical_attributes()