本文整理匯總了Python中logging.config.getfloat方法的典型用法代碼示例。如果您正苦於以下問題:Python config.getfloat方法的具體用法?Python config.getfloat怎麽用?Python config.getfloat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類logging.config
的用法示例。
在下文中一共展示了config.getfloat方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import getfloat [as 別名]
def __init__(self, env):
super(SummaryWorker, self).__init__()
self.env = env
self.config = env.config
self.queue = multiprocessing.Queue()
try:
self.timer_scalar = utils.train.Timer(env.config.getfloat('summary', 'scalar'))
except configparser.NoOptionError:
self.timer_scalar = lambda: False
try:
self.timer_image = utils.train.Timer(env.config.getfloat('summary', 'image'))
except configparser.NoOptionError:
self.timer_image = lambda: False
try:
self.timer_histogram = utils.train.Timer(env.config.getfloat('summary', 'histogram'))
except configparser.NoOptionError:
self.timer_histogram = lambda: False
with open(os.path.expanduser(os.path.expandvars(env.config.get('summary_histogram', 'parameters'))), 'r') as f:
self.histogram_parameters = utils.RegexList([line.rstrip() for line in f])
self.draw_bbox = utils.visualize.DrawBBox(env.category)
self.draw_feature = utils.visualize.DrawFeature()
示例2: draw_bbox_iou
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import getfloat [as 別名]
def draw_bbox_iou(self, canvas_share, yx_min, yx_max, cls, iou, rows, cols, colors=None):
batch_size = len(canvas_share)
yx_min, yx_max = ([np.squeeze(a, -2) for a in np.split(a, a.shape[-2], -2)] for a in (yx_min, yx_max))
cls, iou = ([np.squeeze(a, -1) for a in np.split(a, a.shape[-1], -1)] for a in (cls, iou))
results = []
for i, (yx_min, yx_max, cls, iou) in enumerate(zip(yx_min, yx_max, cls, iou)):
mask = iou > self.config.getfloat('detect', 'threshold')
yx_min, yx_max = (np.reshape(a, [a.shape[0], -1, 2]) for a in (yx_min, yx_max))
cls, iou, mask = (np.reshape(a, [a.shape[0], -1]) for a in (cls, iou, mask))
yx_min, yx_max, cls, iou, mask = ([a[b] for b in range(batch_size)] for a in (yx_min, yx_max, cls, iou, mask))
yx_min, yx_max, cls = ([a[m] for a, m in zip(l, mask)] for l in (yx_min, yx_max, cls))
canvas = [self.draw_bbox(canvas, yx_min.astype(np.int), yx_max.astype(np.int), cls, colors=colors) for canvas, yx_min, yx_max, cls in zip(np.copy(canvas_share), yx_min, yx_max, cls)]
iou = [np.reshape(a, [rows, cols]) for a in iou]
canvas = [self.draw_feature(_canvas, iou) for _canvas, iou in zip(canvas, iou)]
results.append(canvas)
return results
示例3: iterate
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import getfloat [as 別名]
def iterate(self, data):
for key in data:
t = data[key]
if torch.is_tensor(t):
data[key] = utils.ensure_device(t)
tensor = torch.autograd.Variable(data['tensor'])
pred = pybenchmark.profile('inference')(model._inference)(self.inference, tensor)
height, width = data['image'].size()[1:3]
rows, cols = pred['feature'].size()[-2:]
loss, debug = pybenchmark.profile('loss')(model.loss)(self.anchors, norm_data(data, height, width, rows, cols), pred, self.config.getfloat('model', 'threshold'))
loss_hparam = {key: loss[key] * self.config.getfloat('hparam', key) for key in loss}
loss_total = sum(loss_hparam.values())
self.optimizer.zero_grad()
loss_total.backward()
try:
clip = self.config.getfloat('train', 'clip')
nn.utils.clip_grad_norm(self.inference.parameters(), clip)
except configparser.NoOptionError:
pass
self.optimizer.step()
return dict(
height=height, width=width, rows=rows, cols=cols,
data=data, pred=pred, debug=debug,
loss_total=loss_total, loss=loss, loss_hparam=loss_hparam,
)
示例4: configure_processor
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import getfloat [as 別名]
def configure_processor(
args: argparse.Namespace,
config: configparser.ConfigParser,
checks: Iterable[Activity],
wakeups: Iterable[Wakeup],
) -> Processor:
return Processor(
checks,
wakeups,
config.getfloat("general", "idle_time", fallback=300),
config.getfloat("general", "min_sleep_time", fallback=1200),
get_wakeup_delta(config),
get_notify_and_suspend_func(config),
get_schedule_wakeup_func(config),
all_activities=args.all_checks,
)
示例5: main_daemon
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import getfloat [as 別名]
def main_daemon(args: argparse.Namespace, config: configparser.ConfigParser) -> None:
"""Run the daemon."""
checks = set_up_checks(
config,
"check",
"activity",
Activity, # type: ignore
error_none=True,
)
wakeups = set_up_checks(
config, "wakeup", "wakeup", Wakeup, # type: ignore
)
processor = configure_processor(args, config, checks, wakeups)
loop(
processor,
config.getfloat("general", "interval", fallback=60),
run_for=args.run_for,
woke_up_file=get_woke_up_file(config),
lock_file=get_lock_file(config),
lock_timeout=get_lock_timeout(config),
)
示例6: __init__
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import getfloat [as 別名]
def __init__(self, env):
super(SummaryWorker, self).__init__()
self.env = env
self.config = env.config
self.queue = multiprocessing.Queue()
try:
self.timer_scalar = utils.train.Timer(env.config.getfloat('summary', 'scalar'))
except configparser.NoOptionError:
self.timer_scalar = lambda: False
try:
self.timer_image = utils.train.Timer(env.config.getfloat('summary', 'image'))
except configparser.NoOptionError:
self.timer_image = lambda: False
try:
self.timer_histogram = utils.train.Timer(env.config.getfloat('summary', 'histogram'))
except configparser.NoOptionError:
self.timer_histogram = lambda: False
with open(os.path.expanduser(os.path.expandvars(env.config.get('summary_histogram', 'parameters'))), 'r') as f:
self.histogram_parameters = utils.RegexList([line.rstrip() for line in f])
self.draw_points = utils.visualize.DrawPoints(env.limbs_index, colors=env.config.get('draw_points', 'colors').split())
self._draw_points = utils.visualize.DrawPoints(env.limbs_index, thickness=1)
self.draw_bbox = utils.visualize.DrawBBox()
self.draw_feature = utils.visualize.DrawFeature()
self.draw_cluster = utils.visualize.DrawCluster()
示例7: draw_clusters
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import getfloat [as 別名]
def draw_clusters(self, image, parts, limbs):
try:
interpolation = getattr(cv2, 'INTER_' + self.config.get('estimate', 'interpolation').upper())
parts, limbs = (np.stack([cv2.resize(feature, image.shape[1::-1], interpolation=interpolation) for feature in a]) for a in (parts, limbs))
except configparser.NoOptionError:
pass
clusters = pyopenpose.estimate(
parts, limbs,
self.env.limbs_index,
self.config.getfloat('nms', 'threshold'),
self.config.getfloat('integration', 'step'), tuple(map(int, self.config.get('integration', 'step_limits').split())), self.config.getfloat('integration', 'min_score'), self.config.getint('integration', 'min_count'),
self.config.getfloat('cluster', 'min_score'), self.config.getint('cluster', 'min_count'),
)
scale_y, scale_x = np.array(image.shape[1::-1], parts.dtype) / np.array(parts.shape[-2:], parts.dtype)
for cluster in clusters:
cluster = [((i1, int(y1 * scale_y), int(x1 * scale_x)), (i2, int(y2 * scale_y), int(x2 * scale_x))) for (i1, y1, x1), (i2, y2, x2) in cluster]
image = self.draw_cluster(image, cluster)
return image
示例8: iterate
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import getfloat [as 別名]
def iterate(self, data):
for key in data:
t = data[key]
if torch.is_tensor(t):
data[key] = t.to(self.device)
tensor = data['tensor']
outputs = pybenchmark.profile('inference')(self.inference)(tensor)
height, width = data['image'].size()[1:3]
loss = pybenchmark.profile('loss')(model.Loss(self.config, data, self.limbs_index, height, width))
losses = [loss(**output) for output in outputs]
losses_hparam = [{name: self.loss_hparam(i, name, l) for name, l in loss.items()} for i, loss in enumerate(losses)]
loss_total = sum(sum(loss.values()) for loss in losses_hparam)
self.optimizer.zero_grad()
loss_total.backward()
try:
clip = self.config.getfloat('train', 'clip')
nn.utils.clip_grad_norm(self.inference.parameters(), clip)
except configparser.NoOptionError:
pass
self.optimizer.step()
return dict(
height=height, width=width,
data=data, outputs=outputs,
loss_total=loss_total, losses=losses, losses_hparam=losses_hparam,
)
示例9: filter_visible
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import getfloat [as 別名]
def filter_visible(config, iou, yx_min, yx_max, prob):
prob_cls, cls = torch.max(prob, -1)
if config.getboolean('detect', 'fix'):
mask = (iou * prob_cls) > config.getfloat('detect', 'threshold_cls')
else:
mask = iou > config.getfloat('detect', 'threshold')
iou, prob_cls, cls = (t[mask].view(-1) for t in (iou, prob_cls, cls))
_mask = torch.unsqueeze(mask, -1).repeat(1, 2) # PyTorch's bug
yx_min, yx_max = (t[_mask].view(-1, 2) for t in (yx_min, yx_max))
num = prob.size(-1)
_mask = torch.unsqueeze(mask, -1).repeat(1, num) # PyTorch's bug
prob = prob[_mask].view(-1, num)
return iou, yx_min, yx_max, prob, prob_cls, cls
示例10: postprocess
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import getfloat [as 別名]
def postprocess(config, iou, yx_min, yx_max, prob):
iou, yx_min, yx_max, prob, prob_cls, cls = filter_visible(config, iou, yx_min, yx_max, prob)
keep = pybenchmark.profile('nms')(utils.postprocess.nms)(iou, yx_min, yx_max, config.getfloat('detect', 'overlap'))
if keep:
keep = utils.ensure_device(torch.LongTensor(keep))
iou, yx_min, yx_max, prob, prob_cls, cls = (t[keep] for t in (iou, yx_min, yx_max, prob, prob_cls, cls))
if config.getboolean('detect', 'fix'):
score = torch.unsqueeze(iou, -1) * prob
mask = score > config.getfloat('detect', 'threshold_cls')
indices, cls = torch.unbind(mask.nonzero(), -1)
yx_min, yx_max = (t[indices] for t in (yx_min, yx_max))
score = score[mask]
else:
score = iou
return iou, yx_min, yx_max, cls, score
示例11: draw_bbox_pred
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import getfloat [as 別名]
def draw_bbox_pred(self, canvas, yx_min, yx_max, cls, iou, colors=None, nms=False):
batch_size = len(canvas)
mask = iou > self.config.getfloat('detect', 'threshold')
yx_min, yx_max = (np.reshape(a, [a.shape[0], -1, 2]) for a in (yx_min, yx_max))
cls, iou, mask = (np.reshape(a, [a.shape[0], -1]) for a in (cls, iou, mask))
yx_min, yx_max, cls, iou, mask = ([a[b] for b in range(batch_size)] for a in (yx_min, yx_max, cls, iou, mask))
yx_min, yx_max, cls, iou = ([a[m] for a, m in zip(l, mask)] for l in (yx_min, yx_max, cls, iou))
if nms:
overlap = self.config.getfloat('detect', 'overlap')
keep = [pybenchmark.profile('nms')(utils.postprocess.nms)(torch.Tensor(iou), torch.Tensor(yx_min), torch.Tensor(yx_max), overlap) if iou.shape[0] > 0 else [] for yx_min, yx_max, iou in zip(yx_min, yx_max, iou)]
keep = [np.array(k, np.int) for k in keep]
yx_min, yx_max, cls = ([a[k] for a, k in zip(l, keep)] for l in (yx_min, yx_max, cls))
return [self.draw_bbox(canvas, yx_min.astype(np.int), yx_max.astype(np.int), cls, colors=colors) for canvas, yx_min, yx_max, cls in zip(canvas, yx_min, yx_max, cls)]
示例12: get_restful_params
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import getfloat [as 別名]
def get_restful_params(urlstring):
"""Returns a dictionary of paired RESTful URI parameters"""
parsed_path = urllib.parse.urlsplit(urlstring.strip("/"))
query_params = urllib.parse.parse_qsl(parsed_path.query)
path_tokens = parsed_path.path.split('/')
# If first token is API version, ensure it isn't obsolete
api_version = API_VERSION
if len(path_tokens[0]) == 2 and path_tokens[0][0] == 'v':
# Require latest API version
if path_tokens[0][1] != API_VERSION:
return None
api_version = path_tokens.pop(0)
path_params = list_to_dict(path_tokens)
path_params["api_version"] = api_version
path_params.update(query_params)
return path_params
# this doesn't currently work
# if LOAD_TEST:
# config = ConfigParser.RawConfigParser()
# config.read(CONFIG_FILE)
# TEST_CREATE_DEEP_QUOTE_DELAY = config.getfloat('general', 'test_deep_quote_delay')
# TEST_CREATE_QUOTE_DELAY = config.getfloat('general','test_quote_delay')
# NOTE These are still used by platform init in dev in eclipse mode
示例13: async_main
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import getfloat [as 別名]
def async_main(args: argparse.Namespace, config: ConfigParser) -> int:
if args.op.lower() == "delete":
async with bandersnatch.master.Master(
config.get("mirror", "master"),
config.getfloat("mirror", "timeout"),
config.getfloat("mirror", "global-timeout", fallback=None),
) as master:
return await bandersnatch.delete.delete_packages(config, args, master)
elif args.op.lower() == "verify":
return await bandersnatch.verify.metadata_verify(config, args)
elif args.op.lower() == "sync":
return await bandersnatch.mirror.mirror(config, args.packages)
if args.force_check:
storage_plugin = next(iter(storage_backend_plugins()))
status_file = (
storage_plugin.PATH_BACKEND(config.get("mirror", "directory")) / "status"
)
if status_file.exists():
tmp_status_file = Path(gettempdir()) / "status"
try:
shutil.move(str(status_file), tmp_status_file)
logger.debug(
"Force bandersnatch to check everything against the master PyPI"
+ f" - status file moved to {tmp_status_file}"
)
except OSError as e:
logger.error(
f"Could not move status file ({status_file} to "
+ f" {tmp_status_file}): {e}"
)
else:
logger.info(
f"No status file to move ({status_file}) - Full sync will occur"
)
return await bandersnatch.mirror.mirror(config)
示例14: __init__
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import getfloat [as 別名]
def __init__(self):
HackQ.download_nltk_resources()
colorama.init()
self.bearer = config.get("CONNECTION", "BEARER")
self.timeout = config.getfloat("CONNECTION", "Timeout")
self.show_next_info = config.getboolean("MAIN", "ShowNextShowInfo")
self.exit_if_offline = config.getboolean("MAIN", "ExitIfShowOffline")
self.show_bearer_info = config.getboolean("MAIN", "ShowBearerInfo")
self.headers = {"User-Agent": "Android/1.40.0",
"x-hq-client": "Android/1.40.0",
"x-hq-country": "US",
"x-hq-lang": "en",
"x-hq-timezone": "America/New_York",
"Authorization": f"Bearer {self.bearer}",
"Connection": "close"}
self.session = requests.Session()
self.session.headers.update(self.headers)
self.init_root_logger()
self.logger = logging.getLogger(__name__)
# Find local UTC offset
now = time.time()
self.local_utc_offset = datetime.fromtimestamp(now) - datetime.utcfromtimestamp(now)
self.validate_bearer()
self.logger.info("HackQ-Trivia initialized.\n", extra={"pre": colorama.Fore.GREEN})
示例15: get_lock_timeout
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import getfloat [as 別名]
def get_lock_timeout(config: configparser.ConfigParser) -> float:
return config.getfloat("general", "lock_timeout", fallback=30.0)