本文整理匯總了Python中logging.config.get方法的典型用法代碼示例。如果您正苦於以下問題:Python config.get方法的具體用法?Python config.get怎麽用?Python config.get使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類logging.config
的用法示例。
在下文中一共展示了config.get方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: got_init_config
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import get [as 別名]
def got_init_config(self, ch, method, properties, body):
logging.info("Received intitial config %r" % (body))
if self.corr_id == properties.correlation_id: #we got the right config
try: #TODO: add check if response is empty...
new_conf = json.loads(body)
new_conf["rabbitmq"] = config.get("rabbitmq")
except Exception as e:
logging.exception("Wasn't able to read JSON config from manager:\n%s" % e)
time.sleep(60) #sleep for X seconds and then ask again
self.fetch_init_config()
return
logging.info("Trying to apply config and reconnect")
self.apply_config(new_conf)
self.connection_cleanup()
self.connect() #hope this is the right spot
logging.info("Initial config activated")
self.start()
else:
logging.info("This config isn't meant for us")
# Create a zip of all the files which were collected while actions were executed
示例2: __init__
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import get [as 別名]
def __init__(self, args, config):
self.args = args
self.config = config
self.cache_dir = utils.get_cache_dir(config)
self.model_dir = utils.get_model_dir(config)
self.category = utils.get_category(config, self.cache_dir if os.path.exists(self.cache_dir) else None)
self.draw_bbox = utils.visualize.DrawBBox(self.category, colors=args.colors, thickness=args.thickness)
self.anchors = torch.from_numpy(utils.get_anchors(config)).contiguous()
self.height, self.width = tuple(map(int, config.get('image', 'size').split()))
self.path, self.step, self.epoch = utils.train.load_model(self.model_dir)
state_dict = torch.load(self.path, map_location=lambda storage, loc: storage)
self.dnn = utils.parse_attr(config.get('model', 'dnn'))(model.ConfigChannels(config, state_dict), self.anchors, len(self.category))
self.dnn.load_state_dict(state_dict)
self.inference = model.Inference(config, self.dnn, self.anchors)
self.inference.eval()
if torch.cuda.is_available():
self.inference.cuda()
logging.info(humanize.naturalsize(sum(var.cpu().numpy().nbytes for var in self.inference.state_dict().values())))
self.cap = self.create_cap()
self.keys = set(args.keys)
self.resize = transform.parse_transform(config, config.get('transform', 'resize_test'))
self.transform_image = transform.get_transform(config, config.get('transform', 'image_test').split())
self.transform_tensor = transform.get_transform(config, config.get('transform', 'tensor').split())
示例3: main
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import get [as 別名]
def main():
args = make_args()
config = configparser.ConfigParser()
utils.load_config(config, args.config)
for cmd in args.modify:
utils.modify_config(config, cmd)
with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f:
logging.config.dictConfig(yaml.load(f))
height, width = tuple(map(int, config.get('image', 'size').split()))
cache_dir = utils.get_cache_dir(config)
model_dir = utils.get_model_dir(config)
category = utils.get_category(config, cache_dir if os.path.exists(cache_dir) else None)
anchors = utils.get_anchors(config)
anchors = torch.from_numpy(anchors).contiguous()
path, step, epoch = utils.train.load_model(model_dir)
state_dict = torch.load(path, map_location=lambda storage, loc: storage)
dnn = utils.parse_attr(config.get('model', 'dnn'))(model.ConfigChannels(config, state_dict), anchors, len(category))
inference = model.Inference(config, dnn, anchors)
inference.eval()
logging.info(humanize.naturalsize(sum(var.cpu().numpy().nbytes for var in inference.state_dict().values())))
dnn.load_state_dict(state_dict)
image = torch.autograd.Variable(torch.randn(args.batch_size, 3, height, width), volatile=True)
path = model_dir + '.onnx'
logging.info('save ' + path)
torch.onnx.export(dnn, image, path, export_params=True, verbose=args.verbose) # PyTorch's bug
示例4: get_loader
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import get [as 別名]
def get_loader(self):
paths = [os.path.join(self.cache_dir, phase + '.pkl') for phase in self.config.get('eval', 'phase').split()]
dataset = utils.data.Dataset(utils.data.load_pickles(paths))
logging.info('num_examples=%d' % len(dataset))
size = tuple(map(int, self.config.get('image', 'size').split()))
try:
workers = self.config.getint('data', 'workers')
except configparser.NoOptionError:
workers = multiprocessing.cpu_count()
collate_fn = utils.data.Collate(
transform.parse_transform(self.config, self.config.get('transform', 'resize_eval')),
[size],
transform_image=transform.get_transform(self.config, self.config.get('transform', 'image_test').split()),
transform_tensor=transform.get_transform(self.config, self.config.get('transform', 'tensor').split()),
)
return torch.utils.data.DataLoader(dataset, batch_size=self.args.batch_size, num_workers=workers, collate_fn=collate_fn)
示例5: main
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import get [as 別名]
def main():
args = make_args()
config = configparser.ConfigParser()
utils.load_config(config, args.config)
for cmd in args.modify:
utils.modify_config(config, cmd)
with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f:
logging.config.dictConfig(yaml.load(f))
category = utils.get_category(config)
anchors = torch.from_numpy(utils.get_anchors(config)).contiguous()
dnn = utils.parse_attr(config.get('model', 'dnn'))(model.ConfigChannels(config), anchors, len(category))
inference = model.Inference(config, dnn, anchors)
inference.train()
optimizer = eval(config.get('train', 'optimizer'))(filter(lambda p: p.requires_grad, inference.parameters()), args.learning_rate)
scheduler = eval(config.get('train', 'scheduler'))(optimizer)
for epoch in range(args.epoch):
scheduler.step(epoch)
lr = scheduler.get_lr()
print('\t'.join(map(str, [epoch] + lr)))
示例6: __init__
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import get [as 別名]
def __init__(self, env):
super(SummaryWorker, self).__init__()
self.env = env
self.config = env.config
self.queue = multiprocessing.Queue()
try:
self.timer_scalar = utils.train.Timer(env.config.getfloat('summary', 'scalar'))
except configparser.NoOptionError:
self.timer_scalar = lambda: False
try:
self.timer_image = utils.train.Timer(env.config.getfloat('summary', 'image'))
except configparser.NoOptionError:
self.timer_image = lambda: False
try:
self.timer_histogram = utils.train.Timer(env.config.getfloat('summary', 'histogram'))
except configparser.NoOptionError:
self.timer_histogram = lambda: False
with open(os.path.expanduser(os.path.expandvars(env.config.get('summary_histogram', 'parameters'))), 'r') as f:
self.histogram_parameters = utils.RegexList([line.rstrip() for line in f])
self.draw_bbox = utils.visualize.DrawBBox(env.category)
self.draw_feature = utils.visualize.DrawFeature()
示例7: run
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import get [as 別名]
def run(self):
self.writer = SummaryWriter(os.path.join(self.env.model_dir, self.env.args.run))
try:
height, width = tuple(map(int, self.config.get('image', 'size').split()))
tensor = torch.randn(1, 3, height, width)
step, epoch, dnn = self.env.load()
self.writer.add_graph(dnn, (torch.autograd.Variable(tensor),))
except:
traceback.print_exc()
while True:
name, kwargs = self.queue.get()
if name is None:
break
func = getattr(self, 'summary_' + name)
try:
func(**kwargs)
except:
traceback.print_exc()
示例8: get_loader
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import get [as 別名]
def get_loader(self):
paths = [os.path.join(self.cache_dir, phase + '.pkl') for phase in self.config.get('train', 'phase').split()]
dataset = utils.data.Dataset(
utils.data.load_pickles(paths),
transform=transform.augmentation.get_transform(self.config, self.config.get('transform', 'augmentation').split()),
one_hot=None if self.config.getboolean('train', 'cross_entropy') else len(self.category),
shuffle=self.config.getboolean('data', 'shuffle'),
dir=os.path.join(self.model_dir, 'exception'),
)
logging.info('num_examples=%d' % len(dataset))
try:
workers = self.config.getint('data', 'workers')
if torch.cuda.is_available():
workers = workers * torch.cuda.device_count()
except configparser.NoOptionError:
workers = multiprocessing.cpu_count()
collate_fn = utils.data.Collate(
transform.parse_transform(self.config, self.config.get('transform', 'resize_train')),
utils.train.load_sizes(self.config),
maintain=self.config.getint('data', 'maintain'),
transform_image=transform.get_transform(self.config, self.config.get('transform', 'image_train').split()),
transform_tensor=transform.get_transform(self.config, self.config.get('transform', 'tensor').split()),
dir=os.path.join(self.model_dir, 'exception'),
)
return torch.utils.data.DataLoader(dataset, batch_size=self.args.batch_size * torch.cuda.device_count() if torch.cuda.is_available() else self.args.batch_size, shuffle=True, num_workers=workers, collate_fn=collate_fn, pin_memory=torch.cuda.is_available())
示例9: enable_codejail
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import get [as 別名]
def enable_codejail(self, codejail_config):
"""
Enable codejail for the process.
codejail_config is a dict like this:
{
"name": "python",
"bin_path": "/path/to/python",
"user": "sandbox_username",
"limits": {
"CPU": 1,
...
}
}
limits are optional
user defaults to the current user
"""
name = codejail_config["name"]
bin_path = codejail_config['bin_path']
user = codejail_config.get('user', getpass.getuser())
jail_code.configure(name, bin_path, user=user)
limits = codejail_config.get("limits", {})
for name, value in limits.items():
jail_code.set_limit(name, value)
self.log.info("configured codejail -> %s %s %s", name, bin_path, user)
return name
示例10: _get_action_endpoint
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import get [as 別名]
def _get_action_endpoint(action):
"""
Return the endpoint base on the view's action
:param action:
:return:
"""
_endpoint = None
if inspect.ismethod(action) and hasattr(action, "_rule_cache"):
rc = action._rule_cache
if rc:
k = list(rc.keys())[0]
rules = rc[k]
len_rules = len(rules)
if len_rules == 1:
rc_kw = rules[0][1]
_endpoint = rc_kw.get("endpoint", None)
if not _endpoint:
_endpoint = _make_routename_from_endpoint(action)
elif len_rules > 1:
_prefix = _make_routename_from_endpoint(action)
for r in Assembly._app.url_map.iter_rules():
if ('GET' in r.methods or 'POST' in r.methods) and _prefix in r.endpoint:
_endpoint = r.endpoint
break
return _endpoint
示例11: trace
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import get [as 別名]
def trace(self, kwargs):
exc_type, exc_value, exc_traceback = sys.exc_info()
stack = traceback.extract_tb(exc_traceback)
lines = []
for i, s in enumerate(stack):
filename = s.filename
l = len(filename)
shortfile = kwargs.get('shortfile', 40)
if l > shortfile:
filename = filename[filename.find('/', l - shortfile):]
line = '%-40s:%-4s %s' % (
blue() + filename, yellow() + str(s.lineno),
'|' + '-' * (i * 4) + cyan() + s.name + ':' + red() + s.line)
lines.append(line)
lines = '\n\t'.join(lines)
kwargs['extra'] = {
'trace': magenta() + str(exc_type) + ' ' + bold() + magenta() + str(exc_value) + '\n\t' + lines}
示例12: unflatten
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import get [as 別名]
def unflatten(dictionary, sep: str = "."):
"""Turn a flattened dict into a nested dict.
:param dictionary: The dict to unflatten.
:param sep: This character represents a nesting level in a flattened key
:returns: The nested dict
"""
nested = {}
for k, v in dictionary.items():
keys = k.split(sep)
it = nested
for key in keys[:-1]:
# If key is in `it` we get the value otherwise we get a new dict.
# .setdefault will also set the new dict to the value of `it[key]`.
# assigning to `it` will move us a step deeper into the nested dict.
it = it.setdefault(key, {})
it[keys[-1]] = v
return nested
示例13: order_json
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import get [as 別名]
def order_json(data):
"""Sort json to a consistent order.
When you hash json that has the some content but is different orders you get
different fingerprints.
In: hashlib.sha1(json.dumps({'a': 12, 'b':14}).encode('utf-8')).hexdigest()
Out: '647aa7508f72ece3f8b9df986a206d95fd9a2caf'
In: hashlib.sha1(json.dumps({'b': 14, 'a':12}).encode('utf-8')).hexdigest()
Out: 'a22215982dc0e53617be08de7ba9f1a80d232b23'
This function sorts json by key so that hashes are consistent.
Note:
In our configs we only have lists where the order doesn't matter so we
can sort them for consistency. This would have to change if we add a
config field that needs order we will need to refactor this.
:param data: dict, The json data.
:returns:
collections.OrderedDict: The data in a consistent order (keys sorted alphabetically).
"""
new = OrderedDict()
for (key, value) in sorted(data.items(), key=lambda x: x[0]):
if isinstance(value, dict):
value = order_json(value)
new[key] = value
return new
示例14: remove_extra_keys
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import get [as 別名]
def remove_extra_keys(config, keys=KEYS):
"""Remove config items that don't effect the model.
We base most things off of the sha1 hash of the model configs but there
is a problem. Some things in the config file don't effect the model such
as the name of the `conll_output` file or if you are using `visdom`
reporting. This strips out these kind of things so that as long as the model
parameters match the sha1 will too.
:param config: dict, The json data.
:param keys: Set[Tuple[str]], The keys to remove.
:returns:
dict, The config with certain keys removed.
"""
c = deepcopy(config)
for key in keys:
x = c
for k in key[:-1]:
x = x.get(k)
if x is None:
break
else:
_ = x.pop(key[-1], None)
return c
示例15: _get_home
# 需要導入模塊: from logging import config [as 別名]
# 或者: from logging.config import get [as 別名]
def _get_home():
"""Find user's home directory if possible.
Otherwise, returns None.
:see: http://mail.python.org/pipermail/python-list/2005-February/325395.html
This function is copied from matplotlib version 1.4.3, Jan 2016
"""
try:
if six.PY2 and sys.platform == 'win32':
path = os.path.expanduser(b"~").decode(sys.getfilesystemencoding())
else:
path = os.path.expanduser("~")
except ImportError:
# This happens on Google App Engine (pwd module is not present).
pass
else:
if os.path.isdir(path):
return path
for evar in ('HOME', 'USERPROFILE', 'TMP'):
path = os.environ.get(evar)
if path is not None and os.path.isdir(path):
return path
return None