本文整理匯總了Python中logger.info方法的典型用法代碼示例。如果您正苦於以下問題:Python logger.info方法的具體用法?Python logger.info怎麽用?Python logger.info使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類logger
的用法示例。
在下文中一共展示了logger.info方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: add_point
# 需要導入模塊: import logger [as 別名]
# 或者: from logger import info [as 別名]
def add_point(self,x,y,z):
"""
Add point object to model, if the name already exists, an exception will be raised.
if a point in same location exists, the name of the point will be returned.
param:
x,y,z: float-like, coordinates in SI.
[name]: str, name, optional.
return:
str, the new point's name.
"""
try:
pt=Point()
pt.x=x
pt.y=y
pt.z=z
pt.uuid=str(uuid.uuid1())
pt.name=pt.uuid
self.session.add(pt)
return pt.name
except Exception as e:
logger.info(str(e))
self.session.rollback()
return False
示例2: set_point_coordinate
# 需要導入模塊: import logger [as 別名]
# 或者: from logger import info [as 別名]
def set_point_coordinate(self,name,x,y,z):
"""
Set point coordinate.
if a point in same location exists, the name of the point will be returned.
param:
x,y,z: float-like, coordinates in current unit.
[name]: str, name, optional.
return:
str, the new point's name.
"""
try:
pt=self.session.query(Point).filter_by(name=name).first()
if pt is None:
raise Exception("Point doesn't exists.")
scale=self.scale()
pt.x=x*scale['L']
pt.y=y*scale['L']
pt.z=z*scale['L']
self.session.add(pt)
return True
except Exception as e:
logger.info(str(e))
self.session.rollback()
return False
示例3: get_point_coordinate
# 需要導入模塊: import logger [as 別名]
# 或者: from logger import info [as 別名]
def get_point_coordinate(self,name):
"""
Get point coordinate.
param:
name: str, name, optional.
return:
status of success, and tuple of point's coordinate if or None if failed.
"""
try:
pt=self.session.query(Point).filter_by(name=name).first()
if pt is None:
raise Exception("Point doesn't exists.")
scale=self.scale()
x=pt.x/scale['L']
y=pt.y/scale['L']
z=pt.z/scale['L']
return x,y,z
except Exception as e:
logger.info(str(e))
self.session.rollback()
return None
示例4: add_material_quick
# 需要導入模塊: import logger [as 別名]
# 或者: from logger import info [as 別名]
def add_material_quick(self,code):
"""
Add material to model with code, if the name already exists, an exception will be raised
param:
category: str, concrete, steel, wood or alumium
code: str, code of material.
return:
boolean, status of success.
"""
try:
if code=='Q345':
self.add_material(name=code,rho=7850,mat_type='isoelastic',E=2.06e11,mu=0.3)
except Exception as e:
logger.info(str(e))
self.session.rollback()
return False
示例5: set_project_name
# 需要導入模塊: import logger [as 別名]
# 或者: from logger import info [as 別名]
def set_project_name(self,name):
"""
params:
name: str, project name, no more than 32 chars
return:
status of success.
"""
try:
assert(type(name)==str and len(name)<32)
config=self.session.query(Config).first()
config.project_name=name
self.session.add(config)
return True
except Exception as e:
logger.info(str(e))
self.session.rollback()
return False
示例6: set_author
# 需要導入模塊: import logger [as 別名]
# 或者: from logger import info [as 別名]
def set_author(self,author):
"""
params:
author: str, project name, no more than 32 chars
return:
status of success.
"""
try:
assert(type(author)==str and len(author)<32)
config=self.session.query(Config).first()
config.author=author
self.session.add(config)
return True
except Exception as e:
logger.info(str(e))
self.session.rollback()
return False
示例7: set_unit
# 需要導入模塊: import logger [as 別名]
# 或者: from logger import info [as 別名]
def set_unit(self,unit):
"""
params:
unit: str, should be 'N_m_C','N_mm_C','kN_m_C' or 'kN_mm_C'
return:
status of success.
"""
try:
assert(unit in ['N_m_C','N_mm_C','kN_m_C','kN_mm_C'])
config=self.session.query(Config).first()
config.unit=unit
self.session.add(config)
return True
except Exception as e:
logger.info(str(e))
self.session.rollback()
return False
示例8: set_description
# 需要導入模塊: import logger [as 別名]
# 或者: from logger import info [as 別名]
def set_description(self,text):
"""
params:
text: str, description.
return:
status of success.
"""
try:
assert(type(text)==str)
config=self.session.query(Config).first()
config.description=text
self.session.add(config)
return True
except Exception as e:
logger.info(str(e))
self.session.rollback()
return False
示例9: set_frame_section
# 需要導入模塊: import logger [as 別名]
# 或者: from logger import info [as 別名]
def set_frame_section(self,frame,section):
"""
Assign a frame section to a frame.
params:
frame: str, name of frame.
section: str, name of section.
"""
try:
frm=self.session.query(Frame).filter_by(name=frame).first()
if frm is None:
raise Exception("Frame doesn't exists.")
frm.section_name=section
self.session.add(frm)
return True
except Exception as e:
logger.info(str(e))
self.session.rollback()
return False
示例10: set_frame_load_temperature
# 需要導入模塊: import logger [as 別名]
# 或者: from logger import info [as 別名]
def set_frame_load_temperature(self,frame,loadcase,temperature):
"""
params:
frame: str, name of frame.
loadcase: str, name of loadcase.
temperature: float, temperature in 1-1 axis.
return:
status of success.
"""
try:
frm=self.session.query(Frame).filter_by(name=frame).first()
if frm is None:
raise Exception("Frame doesn't exists.")
ld=self.session.query(FrameLoadTemperature).filter_by(frame_name=frame,loadcase_name=loadcase).first()
if ld is None:
ld=FrameLoadTemperature()
ld.frame_name=frame
ld.loadcase_name=loadcase
ld.T=temperature
self.session.add(ld)
return True
except Exception as e:
logger.info(str(e))
self.session.rollback()
return False
示例11: get_frame_end_names
# 需要導入模塊: import logger [as 別名]
# 或者: from logger import info [as 別名]
def get_frame_end_names(self,frame):
"""
params:
frame: str, name of frame.
return:
two point names as frames start and end if successful or None if failed
"""
try:
frm=self.session.query(Frame).filter_by(name=frame).first()
if frm is None:
raise Exception("Frame doesn't exists.")
return frm.pt0.name,frm.pt1.name
except Exception as e:
logger.info(str(e))
self.session.rollback()
return None
示例12: solve_modal
# 需要導入模塊: import logger [as 別名]
# 或者: from logger import info [as 別名]
def solve_modal(model,k:int):
"""
Solve eigen mode of the MDOF system
params:
model: FEModel.
k: number of modes to extract.
"""
K_,M_=model.K_,model.M_
if k>model.DOF:
logger.info('Warning: the modal number to extract is larger than the system DOFs, only %d modes are available'%model.DOF)
k=model.DOF
omega2s,modes = sl.eigsh(K_,k,M_,sigma=0,which='LM')
delta = modes/np.sum(modes,axis=0)
model.is_solved=True
model.mode_=delta
model.omega_=np.sqrt(omega2s).reshape((k,1))
示例13: setup_param_noise
# 需要導入模塊: import logger [as 別名]
# 或者: from logger import info [as 別名]
def setup_param_noise(self, normalized_obs0):
assert self.param_noise is not None
# Configure perturbed actor.
param_noise_actor = copy(self.actor)
param_noise_actor.name = 'param_noise_actor'
self.perturbed_actor_tf = param_noise_actor(normalized_obs0)
logger.info('setting up param noise')
self.perturb_policy_ops = get_perturbed_actor_updates(self.actor, param_noise_actor, self.param_noise_stddev)
# Configure separate copy for stddev adoption.
adaptive_param_noise_actor = copy(self.actor)
adaptive_param_noise_actor.name = 'adaptive_param_noise_actor'
adaptive_actor_tf = adaptive_param_noise_actor(normalized_obs0)
self.perturb_adaptive_policy_ops = get_perturbed_actor_updates(self.actor, adaptive_param_noise_actor, self.param_noise_stddev)
self.adaptive_policy_distance = tf.sqrt(tf.reduce_mean(tf.square(self.actor_tf - adaptive_actor_tf)))
開發者ID:quantumiracle,項目名稱:Reinforcement_Learning_for_Traffic_Light_Control,代碼行數:18,代碼來源:ddpg_learner.py
示例14: setup_critic_optimizer
# 需要導入模塊: import logger [as 別名]
# 或者: from logger import info [as 別名]
def setup_critic_optimizer(self):
logger.info('setting up critic optimizer')
normalized_critic_target_tf = tf.clip_by_value(normalize(self.critic_target, self.ret_rms), self.return_range[0], self.return_range[1])
self.critic_loss = tf.reduce_mean(tf.square(self.normalized_critic_tf - normalized_critic_target_tf))
if self.critic_l2_reg > 0.:
critic_reg_vars = [var for var in self.critic.trainable_vars if 'kernel' in var.name and 'output' not in var.name]
for var in critic_reg_vars:
logger.info(' regularizing: {}'.format(var.name))
logger.info(' applying l2 regularization with {}'.format(self.critic_l2_reg))
critic_reg = tc.layers.apply_regularization(
tc.layers.l2_regularizer(self.critic_l2_reg),
weights_list=critic_reg_vars
)
self.critic_loss += critic_reg
critic_shapes = [var.get_shape().as_list() for var in self.critic.trainable_vars]
critic_nb_params = sum([reduce(lambda x, y: x * y, shape) for shape in critic_shapes])
logger.info(' critic shapes: {}'.format(critic_shapes))
logger.info(' critic params: {}'.format(critic_nb_params))
self.critic_grads = U.flatgrad(self.critic_loss, self.critic.trainable_vars, clip_norm=self.clip_norm)
self.critic_optimizer = MpiAdam(var_list=self.critic.trainable_vars,
beta1=0.9, beta2=0.999, epsilon=1e-08)
開發者ID:quantumiracle,項目名稱:Reinforcement_Learning_for_Traffic_Light_Control,代碼行數:23,代碼來源:ddpg_learner.py
示例15: saveModelParams
# 需要導入模塊: import logger [as 別名]
# 或者: from logger import info [as 別名]
def saveModelParams(epoch, runningResults, netG, netD):
results = {'DLoss': [], 'GLoss': [], 'DScore': [], 'GScore': [], 'PSNR': [], 'SSIM': []}
# Save model parameters
torch.save(netG.state_dict(), 'weights/netG_epoch_%d_%d.pth' % (UPSCALE_FACTOR, epoch))
torch.save(netD.state_dict(), 'weights/netD_epoch_%d_%d.pth' % (UPSCALE_FACTOR, epoch))
logger.info("Checkpoint saved to {}".format('weights/netG_epoch_%d_%d.pth' % (UPSCALE_FACTOR, epoch)))
logger.info("Checkpoint saved to {}".format('weights/netD_epoch_%d_%d.pth' % (UPSCALE_FACTOR, epoch)))
# Save Loss\Scores\PSNR\SSIM
results['DLoss'].append(runningResults['DLoss'] / runningResults['batchSize'])
results['GLoss'].append(runningResults['GLoss'] / runningResults['batchSize'])
results['DScore'].append(runningResults['DScore'] / runningResults['batchSize'])
results['GScore'].append(runningResults['GScore'] / runningResults['batchSize'])
#results['PSNR'].append(validationResults['PSNR'])
#results['SSIM'].append(validationResults['SSIM'])
if epoch % 1 == 0 and epoch != 0:
out_path = 'statistics/'
data_frame = pd.DataFrame(data={'DLoss': results['DLoss'], 'GLoss': results['GLoss'], 'DScore': results['DScore'],
'GScore': results['GScore']},#, 'PSNR': results['PSNR'], 'SSIM': results['SSIM']},
index=range(1, epoch + 1))
data_frame.to_csv(out_path + 'iSeeBetter_' + str(UPSCALE_FACTOR) + '_Train_Results.csv', index_label='Epoch')