當前位置: 首頁>>代碼示例>>Python>>正文


Python lmfit.minimize方法代碼示例

本文整理匯總了Python中lmfit.minimize方法的典型用法代碼示例。如果您正苦於以下問題:Python lmfit.minimize方法的具體用法?Python lmfit.minimize怎麽用?Python lmfit.minimize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lmfit的用法示例。


在下文中一共展示了lmfit.minimize方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import lmfit [as 別名]
# 或者: from lmfit import minimize [as 別名]
def __init__(self, model: Type[CompartmentalModel], parameters: tuple = None, data: np.array = None,
                 initial_conditions: list = None, fit_method: str = 'leastsq', error: callable = None,
                 fit_period: float = None):
        """
        A class to standardize fitting and solving epidemiological models.

        :param model: the model to use, currently a class in the form of SIR, SEIR above
        :param parameters: tuple, parameters to use for the model, defaults to the output of [model].get_parameters
        :param data: np.array, data that can be used to calibrate the model
        :param initial_conditions: list, initial conditions for the model
        :param fit_method: str, the method to use to minimize the (given) error. Available methods are those in the
                           lmfit.minimizer.minimize function. Default is Levenberg-Marquardt least squares minimization.
        :param error: callable, control which residuals (and in what form) to minimize for fitting.
        :param fit_period: float, how far back to fit the data, defaults to fitting all data
        """
        self.model = model
        self.parameters = parameters
        self.data = data
        self.initial_conditions = initial_conditions
        self.fit_method = fit_method
        self.error = error
        self.fit_period = fit_period
        self.result = None
        self.fitted_parameters = None 
開發者ID:goldmansachs,項目名稱:gs-quant,代碼行數:26,代碼來源:epidemiology.py

示例2: residual

# 需要導入模塊: import lmfit [as 別名]
# 或者: from lmfit import minimize [as 別名]
def residual(self, parameters: Parameters, time_range: np.arange, data: np.ndarray) -> np.ndarray:
        """
        Obtain fit error (to minimize).

        :param parameters: parameters to use (which we are usually minimizing the residual for)
        :param time_range: time range for solution (over which we obtain the residual)
        :param data: data to fit the models too (i.e. compute residuals in terms of)
        :return:
        """
        initial_conditions = []
        for variable in self.initial_conditions:
            initial_conditions.append(parameters[variable].value)

        # obtain solution given current initial conditions and parameters
        solution = self.solve(time_range, initial_conditions, parameters)

        # compute residual, using custom error function if it has been passed in
        residual = solution - data if self.error is None else self.error(solution, data, parameters)

        if self.fit_period is not None:
            residual = residual[-self.fit_period:]

        return residual.ravel() 
開發者ID:goldmansachs,項目名稱:gs-quant,代碼行數:25,代碼來源:epidemiology.py

示例3: fit

# 需要導入模塊: import lmfit [as 別名]
# 或者: from lmfit import minimize [as 別名]
def fit(self, time_range: np.arange = None, parameters: [Parameters, tuple] = None, initial_conditions: list = None,
            residual=None, verbose: bool = False, data: np.array = None, fit_period: float = None):
        """
        Fit the model based on data in the form np.array([X1,...,Xn])
        """
        if data is None:
            if self.data is None:
                raise ValueError("No data to fit the model on!")
            data = self.data
        if initial_conditions is not None:
            self.initial_conditions = initial_conditions
        if self.initial_conditions is None:
            raise ValueError("No initial conditions to fit the model with!")
        if parameters is None:
            if self.parameters is None:
                raise ValueError("No parameters to fit the model with!")
            parameters = self.parameters
        if time_range is None:
            time_range = np.arange(data.shape[0])
        if fit_period is not None:
            self.fit_period = fit_period
        if residual is None:
            residual = self.residual

        result = minimize(residual, parameters, args=(time_range, data), method=self.fit_method)
        self.result = result
        self.fitted_parameters = result.params.valuesdict()

        if verbose:
            report_fit(result)

        return result 
開發者ID:goldmansachs,項目名稱:gs-quant,代碼行數:34,代碼來源:epidemiology.py

示例4: fit

# 需要導入模塊: import lmfit [as 別名]
# 或者: from lmfit import minimize [as 別名]
def fit(self, ems_data, on_engine, drive_battery_state_of_charges,
            after_treatment_warm_up_phases):
        import lmfit
        k = np.where(~on_engine, *self.reference(ems_data)['k_reference'].T)

        # Filter data.
        b = ~after_treatment_warm_up_phases & ~ems_data['force_on_engine']
        b &= np.isfinite(k)
        s = np.where(on_engine[b], 1, -1)
        soc = drive_battery_state_of_charges[b]

        def _(x):
            x = x.valuesdict()
            time = x['starter_time']
            return np.float32(np.maximum(0, s * (self._k(x, soc) - np.where(
                ~on_engine, *self.reference(ems_data, time)['k_reference'].T
            )[b].T)).sum())

        p = lmfit.Parameters()
        starter_time = self.starter_model.time
        p.add('starter_time', 1, min=starter_time, max=starter_time * 10)
        p.add('k0', 0, min=0)
        p.add('soc0', 0, min=0, max=100)
        p.add('alpha', 0, min=0)
        p.add('beta', 0, min=0)

        with co2_utl.numpy_random_seed(0):
            # noinspection PyUnresolvedReferences
            self.params = lmfit.minimize(_, p, 'ampgo').params.valuesdict()
        return self 
開發者ID:JRCSTU,項目名稱:CO2MPAS-TA,代碼行數:32,代碼來源:hybrid.py

示例5: fit_pixel_nonlinear_per_line

# 需要導入模塊: import lmfit [as 別名]
# 或者: from lmfit import minimize [as 別名]
def fit_pixel_nonlinear_per_line(row_num, data, x0,
                                 param, reg_mat,
                                 use_snip):  # c_weight, fit_num, ftol):

    # c_weight = 1
    # fit_num = 100
    # ftol = 1e-3

    elist = param['non_fitting_values']['element_list'].split(', ')
    elist = [e.strip(' ') for e in elist]

    # LinearModel = lmfit.Model(simple_spectrum_fun_for_nonlinear)
    # for i in np.arange(reg_mat.shape[0]):
    #     LinearModel.set_param_hint('a'+str(i), value=0.1, min=0, vary=True)

    logger.info('Row number at {}'.format(row_num))
    out = []
    snip_bg = 0
    for i in range(data.shape[0]):
        if use_snip is True:
            bg = snip_method_numba(data[i, :],
                                   param['e_offset']['value'],
                                   param['e_linear']['value'],
                                   param['e_quadratic']['value'],
                                   width=param['non_fitting_values']['background_width'])
            y0 = data[i, :] - bg
            snip_bg = np.sum(bg)
        else:
            y0 = data[i, :]

        fit_params = lmfit.Parameters()
        for i in range(reg_mat.shape[1]):
            fit_params.add('a'+str(i), value=1.0, min=0, vary=True)

        result = lmfit.minimize(residual_nonlinear_fit,
                                fit_params, args=(x0,),
                                kws={'data': y0, 'reg_mat': reg_mat})

        # result = MS.model_fit(x0, y0,
        #                       weights=1/np.sqrt(c_weight+y0),
        #                       maxfev=fit_num,
        #                       xtol=ftol, ftol=ftol, gtol=ftol)
        # namelist = list(result.keys())
        temp = {}
        temp['value'] = [result.params[v].value for v in list(result.params.keys())]
        temp['err'] = [result.params[v].stderr for v in list(result.params.keys())]
        temp['snip_bg'] = snip_bg
        out.append(temp)
    return out 
開發者ID:NSLS-II,項目名稱:PyXRF,代碼行數:51,代碼來源:fit_spectrum.py


注:本文中的lmfit.minimize方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。