當前位置: 首頁>>代碼示例>>Python>>正文


Python lightgbm.cv方法代碼示例

本文整理匯總了Python中lightgbm.cv方法的典型用法代碼示例。如果您正苦於以下問題:Python lightgbm.cv方法的具體用法?Python lightgbm.cv怎麽用?Python lightgbm.cv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lightgbm的用法示例。


在下文中一共展示了lightgbm.cv方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def __call__(self, trial: optuna.trial.Trial) -> float:

        self._preprocess(trial)

        start_time = time.time()
        cv_results = lgb.cv(self.lgbm_params, self.train_set, **self.lgbm_kwargs)

        val_scores = self._get_cv_scores(cv_results)
        val_score = val_scores[-1]
        elapsed_secs = time.time() - start_time
        average_iteration_time = elapsed_secs / len(val_scores)

        if self.compare_validation_metrics(val_score, self.best_score):
            self.best_score = val_score

        self._postprocess(trial, elapsed_secs, average_iteration_time)

        return val_score 
開發者ID:optuna,項目名稱:optuna,代碼行數:20,代碼來源:optimize.py

示例2: get_n_estimators

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def get_n_estimators(self):
        """
        returns optimal number of estimators using CV on training set
        """
        lgb_param = {}
        for _params_key,_params_value in self._params.items():
            if _params_key in self._dict_map.keys():
                lgb_param[self._dict_map[_params_key]] = _params_value
            else:
                lgb_param[_params_key] = _params_value
        
        if self.balance_class:
            lgb_train = lgb.Dataset(self.X, label=self.y, weight=self.get_label_weights())
        else:
            lgb_train = lgb.Dataset(self.X, label=self.y)
        
        kwargs_cv = {'num_boost_round':self.params['n_estimators'],
                     'nfold':self.params_cv['cv_folds'],
                     'early_stopping_rounds':self.params_cv['early_stopping_rounds'],
                     'stratified':self.params_cv['stratified']}
        
        try: # check if custom evalution function is specified
            if callable(self.params_cv['feval']):
                kwargs_cv['feval'] = self.params_cv['feval']
        except KeyError:
            kwargs_cv['metrics'] = self.params_cv['metrics']
        
        if type(self.categorical_feature)==list:
            kwargs_cv['categorical_feature'] = self.categorical_feature
        else:
            kwargs_cv['categorical_feature'] = 'auto'
        
        cvresult = lgb.cv(lgb_param,lgb_train,**kwargs_cv)
        self._params['n_estimators'] = int(len(cvresult[kwargs_cv['metrics'] + \
                                            '-mean'])/(1-1/self.params_cv['cv_folds']))
        return self 
開發者ID:arnaudvl,項目名稱:ml-parameter-optimization,代碼行數:38,代碼來源:lgb_tune.py

示例3: test_lightgbm_pruning_callback_call

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_pruning_callback_call(cv):
    # type: (bool) -> None

    callback_env = partial(
        lgb.callback.CallbackEnv,
        model="test",
        params={},
        begin_iteration=0,
        end_iteration=1,
        iteration=1,
    )

    if cv:
        env = callback_env(evaluation_result_list=[(("cv_agg", "binary_error", 1.0, False, 1.0))])
    else:
        env = callback_env(evaluation_result_list=[("validation", "binary_error", 1.0, False)])

    # The pruner is deactivated.
    study = optuna.create_study(pruner=DeterministicPruner(False))
    trial = create_running_trial(study, 1.0)
    pruning_callback = LightGBMPruningCallback(trial, "binary_error", valid_name="validation")
    pruning_callback(env)

    # The pruner is activated.
    study = optuna.create_study(pruner=DeterministicPruner(True))
    trial = create_running_trial(study, 1.0)
    pruning_callback = LightGBMPruningCallback(trial, "binary_error", valid_name="validation")
    with pytest.raises(optuna.TrialPruned):
        pruning_callback(env) 
開發者ID:optuna,項目名稱:optuna,代碼行數:31,代碼來源:test_lightgbm.py

示例4: test_lightgbm_pruning_callback

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_pruning_callback(cv):
    # type: (bool) -> None

    study = optuna.create_study(pruner=DeterministicPruner(True))
    study.optimize(partial(objective, cv=cv), n_trials=1)
    assert study.trials[0].state == optuna.trial.TrialState.PRUNED

    study = optuna.create_study(pruner=DeterministicPruner(False))
    study.optimize(partial(objective, cv=cv), n_trials=1)
    assert study.trials[0].state == optuna.trial.TrialState.COMPLETE
    assert study.trials[0].value == 1.0

    # Use non default validation name.
    custom_valid_name = "my_validation"
    study = optuna.create_study(pruner=DeterministicPruner(False))
    study.optimize(lambda trial: objective(trial, valid_name=custom_valid_name, cv=cv), n_trials=1)
    assert study.trials[0].state == optuna.trial.TrialState.COMPLETE
    assert study.trials[0].value == 1.0

    # Check "maximize" direction.
    study = optuna.create_study(pruner=DeterministicPruner(True), direction="maximize")
    study.optimize(lambda trial: objective(trial, metric="auc", cv=cv), n_trials=1, catch=())
    assert study.trials[0].state == optuna.trial.TrialState.PRUNED

    study = optuna.create_study(pruner=DeterministicPruner(False), direction="maximize")
    study.optimize(lambda trial: objective(trial, metric="auc", cv=cv), n_trials=1, catch=())
    assert study.trials[0].state == optuna.trial.TrialState.COMPLETE
    assert study.trials[0].value == 1.0 
開發者ID:optuna,項目名稱:optuna,代碼行數:30,代碼來源:test_lightgbm.py

示例5: test_lightgbm_pruning_callback_errors

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_pruning_callback_errors(cv):
    # type: (bool) -> None

    # Unknown metric
    study = optuna.create_study(pruner=DeterministicPruner(False))
    with pytest.raises(ValueError):
        study.optimize(
            lambda trial: objective(trial, metric="foo_metric", cv=cv), n_trials=1, catch=()
        )

    if not cv:
        # Unknown validation name
        study = optuna.create_study(pruner=DeterministicPruner(False))
        with pytest.raises(ValueError):
            study.optimize(
                lambda trial: objective(
                    trial, valid_name="valid_1", force_default_valid_names=True
                ),
                n_trials=1,
                catch=(),
            )

    # Check consistency of study direction.
    study = optuna.create_study(pruner=DeterministicPruner(False))
    with pytest.raises(ValueError):
        study.optimize(lambda trial: objective(trial, metric="auc", cv=cv), n_trials=1, catch=())

    study = optuna.create_study(pruner=DeterministicPruner(False), direction="maximize")
    with pytest.raises(ValueError):
        study.optimize(
            lambda trial: objective(trial, metric="binary_error", cv=cv), n_trials=1, catch=()
        ) 
開發者ID:optuna,項目名稱:optuna,代碼行數:34,代碼來源:test_lightgbm.py

示例6: objective

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def objective(
    trial, metric="binary_error", valid_name="valid_0", force_default_valid_names=False, cv=False
):
    # type: (optuna.trial.Trial, str, str, bool, bool) -> float

    dtrain = lgb.Dataset([[1.0], [2.0], [3.0]], label=[1.0, 0.0, 1.0])
    dtest = lgb.Dataset([[1.0]], label=[1.0])

    if force_default_valid_names:
        valid_names = None
    else:
        valid_names = [valid_name]

    pruning_callback = LightGBMPruningCallback(trial, metric, valid_name=valid_name)
    if cv:
        lgb.cv(
            {"objective": "binary", "metric": ["auc", "binary_error"]},
            dtrain,
            1,
            verbose_eval=False,
            nfold=2,
            callbacks=[pruning_callback],
        )
    else:
        lgb.train(
            {"objective": "binary", "metric": ["auc", "binary_error"]},
            dtrain,
            1,
            valid_sets=[dtest],
            valid_names=valid_names,
            verbose_eval=False,
            callbacks=[pruning_callback],
        )
    return 1.0 
開發者ID:optuna,項目名稱:optuna,代碼行數:36,代碼來源:test_lightgbm.py

示例7: test_lightgbm_gpu

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_gpu(booster):
    import numpy as np
    import pandas as pd
    from h2o4gpu.util.lightgbm_dynamic import got_cpu_lgb, got_gpu_lgb
    import lightgbm as lgb

    X1 = np.repeat(np.arange(10), 1000)
    X2 = np.repeat(np.arange(10), 1000)
    np.random.shuffle(X2)

    y = (X1 + np.random.randn(10000)) * (X2 + np.random.randn(10000))
    data = pd.DataFrame({'y': y, 'X1': X1, 'X2': X2})

    lgb_params = {'learning_rate': 0.1,
                  'boosting': booster,
                  'objective': 'regression',
                  'metric': 'rmse',
                  'feature_fraction': 0.9,
                  'bagging_fraction': 0.75,
                  'num_leaves': 31,
                  'bagging_freq': 1,
                  'min_data_per_leaf': 250, 'device_type': 'gpu', 'gpu_device_id': 0}
    lgb_train = lgb.Dataset(data=data[['X1', 'X2']], label=data.y)
    cv = lgb.cv(lgb_params,
                lgb_train,
                num_boost_round=100,
                early_stopping_rounds=15,
                stratified=False,
                verbose_eval=50) 
開發者ID:h2oai,項目名稱:h2o4gpu,代碼行數:31,代碼來源:test_lightgbm.py

示例8: test_lightgbm_cpu

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_cpu(booster):
    import numpy as np
    import pandas as pd
    from h2o4gpu.util.lightgbm_dynamic import got_cpu_lgb, got_gpu_lgb
    import lightgbm as lgb

    X1 = np.repeat(np.arange(10), 1000)
    X2 = np.repeat(np.arange(10), 1000)
    np.random.shuffle(X2)

    y = (X1 + np.random.randn(10000)) * (X2 + np.random.randn(10000))
    data = pd.DataFrame({'y': y, 'X1': X1, 'X2': X2})

    lgb_params = {'learning_rate': 0.1,
                  'boosting': booster,
                  'objective': 'regression',
                  'metric': 'rmse',
                  'feature_fraction': 0.9,
                  'bagging_fraction': 0.75,
                  'num_leaves': 31,
                  'bagging_freq': 1,
                  'min_data_per_leaf': 250}
    lgb_train = lgb.Dataset(data=data[['X1', 'X2']], label=data.y)
    cv = lgb.cv(lgb_params,
                lgb_train,
                num_boost_round=100,
                early_stopping_rounds=15,
                stratified=False,
                verbose_eval=50) 
開發者ID:h2oai,項目名稱:h2o4gpu,代碼行數:31,代碼來源:test_lightgbm.py

示例9: test_lightgbm_cpu_airlines_full

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_cpu_airlines_full(booster):
    import numpy as np
    import pandas as pd
    from h2o4gpu.util.lightgbm_dynamic import got_cpu_lgb, got_gpu_lgb
    import lightgbm as lgb

    data = pd.read_csv('./open_data/allyears.1987.2013.zip',
                       dtype={'UniqueCarrier': 'category', 'Origin': 'category', 'Dest': 'category',
                              'TailNum': 'category', 'CancellationCode': 'category',
                              'IsArrDelayed': 'category', 'IsDepDelayed': 'category',
                              'DepTime': np.float32, 'CRSDepTime': np.float32, 'ArrTime': np.float32,
                              'CRSArrTime': np.float32, 'ActualElapsedTime': np.float32,
                              'CRSElapsedTime': np.float32, 'AirTime': np.float32,
                              'ArrDelay': np.float32, 'DepDelay': np.float32, 'Distance': np.float32,
                              'TaxiIn': np.float32, 'TaxiOut': np.float32, 'Diverted': np.float32,
                              'Year': np.int32, 'Month': np.int32, 'DayOfWeek': np.int32,
                              'DayofMonth': np.int32, 'Cancelled': 'category',
                              'CarrierDelay': np.float32, 'WeatherDelay': np.float32,
                              'NASDelay': np.float32, 'SecurityDelay': np.float32,
                              'LateAircraftDelay': np.float32})

    y = data["IsArrDelayed"].cat.codes
    data = data[['UniqueCarrier', 'Origin', 'Dest', 'IsDepDelayed', 'Year', 'Month',
                 'DayofMonth', 'DayOfWeek', 'DepTime', 'CRSDepTime',
                 'ArrTime', 'CRSArrTime', 'FlightNum', 'TailNum',
                 'ActualElapsedTime', 'CRSElapsedTime', 'AirTime', 'ArrDelay',
                 'DepDelay', 'Distance', 'TaxiIn', 'TaxiOut',
                 'Cancelled', 'CancellationCode', 'Diverted', 'CarrierDelay',
                 'WeatherDelay', 'NASDelay', 'SecurityDelay', 'LateAircraftDelay']]

    lgb_params = {'learning_rate': 0.1,
                  'boosting': booster,
                  'objective': 'binary',
                  'metric': 'rmse',
                  'feature_fraction': 0.9,
                  'bagging_fraction': 0.75,
                  'num_leaves': 31,
                  'bagging_freq': 1,
                  'min_data_per_leaf': 250}
    lgb_train = lgb.Dataset(data=data, label=y)
    cv = lgb.cv(lgb_params,
                lgb_train,
                num_boost_round=50,
                early_stopping_rounds=5,
                stratified=False,
                verbose_eval=10) 
開發者ID:h2oai,項目名稱:h2o4gpu,代碼行數:48,代碼來源:test_lightgbm.py

示例10: test_lightgbm_cpu_airlines_year

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_cpu_airlines_year(booster, year):
    import numpy as np
    import pandas as pd
    from h2o4gpu.util.lightgbm_dynamic import got_cpu_lgb, got_gpu_lgb
    import lightgbm as lgb

    data = pd.read_csv('./open_data/airlines/year{0}.zip'.format(year),
                       dtype={'UniqueCarrier': 'category', 'Origin': 'category', 'Dest': 'category',
                              'TailNum': 'category', 'CancellationCode': 'category',
                              'IsArrDelayed': 'category', 'IsDepDelayed': 'category',
                              'DepTime': np.float32, 'CRSDepTime': np.float32, 'ArrTime': np.float32,
                              'CRSArrTime': np.float32, 'ActualElapsedTime': np.float32,
                              'CRSElapsedTime': np.float32, 'AirTime': np.float32,
                              'ArrDelay': np.float32, 'DepDelay': np.float32, 'Distance': np.float32,
                              'TaxiIn': np.float32, 'TaxiOut': np.float32, 'Diverted': np.float32,
                              'Year': np.int32, 'Month': np.int32, 'DayOfWeek': np.int32,
                              'DayofMonth': np.int32, 'Cancelled': 'category',
                              'CarrierDelay': np.float32, 'WeatherDelay': np.float32,
                              'NASDelay': np.float32, 'SecurityDelay': np.float32,
                              'LateAircraftDelay': np.float32})

    y = data["IsArrDelayed"].cat.codes
    data = data[['UniqueCarrier', 'Origin', 'Dest', 'IsDepDelayed', 'Year', 'Month',
                 'DayofMonth', 'DayOfWeek', 'DepTime', 'CRSDepTime',
                 'ArrTime', 'CRSArrTime', 'FlightNum', 'TailNum',
                 'ActualElapsedTime', 'CRSElapsedTime', 'AirTime', 'ArrDelay',
                 'DepDelay', 'Distance', 'TaxiIn', 'TaxiOut',
                 'Cancelled', 'CancellationCode', 'Diverted', 'CarrierDelay',
                 'WeatherDelay', 'NASDelay', 'SecurityDelay', 'LateAircraftDelay']]

    lgb_params = {'learning_rate': 0.1,
                  'boosting': booster,
                  'objective': 'binary',
                  'metric': 'rmse',
                  'feature_fraction': 0.9,
                  'bagging_fraction': 0.75,
                  'num_leaves': 31,
                  'bagging_freq': 1,
                  'min_data_per_leaf': 250}
    lgb_train = lgb.Dataset(data=data, label=y)
    cv = lgb.cv(lgb_params,
                lgb_train,
                num_boost_round=50,
                early_stopping_rounds=5,
                stratified=False,
                verbose_eval=10) 
開發者ID:h2oai,項目名稱:h2o4gpu,代碼行數:48,代碼來源:test_lightgbm.py

示例11: test_lightgbm_gpu_airlines_year

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_gpu_airlines_year(booster, year):
    import numpy as np
    import pandas as pd
    from h2o4gpu.util.lightgbm_dynamic import got_cpu_lgb, got_gpu_lgb
    import lightgbm as lgb

    data = pd.read_csv('./open_data/airlines/year{0}.zip'.format(year),
                       dtype={'UniqueCarrier': 'category', 'Origin': 'category', 'Dest': 'category',
                              'TailNum': 'category', 'CancellationCode': 'category',
                              'IsArrDelayed': 'category', 'IsDepDelayed': 'category',
                              'DepTime': np.float32, 'CRSDepTime': np.float32, 'ArrTime': np.float32,
                              'CRSArrTime': np.float32, 'ActualElapsedTime': np.float32,
                              'CRSElapsedTime': np.float32, 'AirTime': np.float32,
                              'ArrDelay': np.float32, 'DepDelay': np.float32, 'Distance': np.float32,
                              'TaxiIn': np.float32, 'TaxiOut': np.float32, 'Diverted': np.float32,
                              'Year': np.int32, 'Month': np.int32, 'DayOfWeek': np.int32,
                              'DayofMonth': np.int32, 'Cancelled': 'category',
                              'CarrierDelay': np.float32, 'WeatherDelay': np.float32,
                              'NASDelay': np.float32, 'SecurityDelay': np.float32,
                              'LateAircraftDelay': np.float32})

    y = data["IsArrDelayed"].cat.codes
    data = data[['UniqueCarrier', 'Origin', 'Dest', 'IsDepDelayed', 'Year', 'Month',
                 'DayofMonth', 'DayOfWeek', 'DepTime', 'CRSDepTime',
                 'ArrTime', 'CRSArrTime', 'FlightNum', 'TailNum',
                 'ActualElapsedTime', 'CRSElapsedTime', 'AirTime', 'ArrDelay',
                 'DepDelay', 'Distance', 'TaxiIn', 'TaxiOut',
                 'Cancelled', 'CancellationCode', 'Diverted', 'CarrierDelay',
                 'WeatherDelay', 'NASDelay', 'SecurityDelay', 'LateAircraftDelay']]

    lgb_params = {'learning_rate': 0.1,
                  'boosting': booster,
                  'objective': 'binary',
                  'metric': 'rmse',
                  'feature_fraction': 0.9,
                  'bagging_fraction': 0.75,
                  'num_leaves': 31,
                  'bagging_freq': 1,
                  'min_data_per_leaf': 250,
                  'device_type': 'gpu',
                  'gpu_device_id': 0}
    lgb_train = lgb.Dataset(data=data, label=y)
    cv = lgb.cv(lgb_params,
                lgb_train,
                num_boost_round=50,
                early_stopping_rounds=5,
                stratified=False,
                verbose_eval=10) 
開發者ID:h2oai,項目名稱:h2o4gpu,代碼行數:50,代碼來源:test_lightgbm.py


注:本文中的lightgbm.cv方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。