本文整理匯總了Python中lightgbm.cv方法的典型用法代碼示例。如果您正苦於以下問題:Python lightgbm.cv方法的具體用法?Python lightgbm.cv怎麽用?Python lightgbm.cv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類lightgbm
的用法示例。
在下文中一共展示了lightgbm.cv方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def __call__(self, trial: optuna.trial.Trial) -> float:
self._preprocess(trial)
start_time = time.time()
cv_results = lgb.cv(self.lgbm_params, self.train_set, **self.lgbm_kwargs)
val_scores = self._get_cv_scores(cv_results)
val_score = val_scores[-1]
elapsed_secs = time.time() - start_time
average_iteration_time = elapsed_secs / len(val_scores)
if self.compare_validation_metrics(val_score, self.best_score):
self.best_score = val_score
self._postprocess(trial, elapsed_secs, average_iteration_time)
return val_score
示例2: get_n_estimators
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def get_n_estimators(self):
"""
returns optimal number of estimators using CV on training set
"""
lgb_param = {}
for _params_key,_params_value in self._params.items():
if _params_key in self._dict_map.keys():
lgb_param[self._dict_map[_params_key]] = _params_value
else:
lgb_param[_params_key] = _params_value
if self.balance_class:
lgb_train = lgb.Dataset(self.X, label=self.y, weight=self.get_label_weights())
else:
lgb_train = lgb.Dataset(self.X, label=self.y)
kwargs_cv = {'num_boost_round':self.params['n_estimators'],
'nfold':self.params_cv['cv_folds'],
'early_stopping_rounds':self.params_cv['early_stopping_rounds'],
'stratified':self.params_cv['stratified']}
try: # check if custom evalution function is specified
if callable(self.params_cv['feval']):
kwargs_cv['feval'] = self.params_cv['feval']
except KeyError:
kwargs_cv['metrics'] = self.params_cv['metrics']
if type(self.categorical_feature)==list:
kwargs_cv['categorical_feature'] = self.categorical_feature
else:
kwargs_cv['categorical_feature'] = 'auto'
cvresult = lgb.cv(lgb_param,lgb_train,**kwargs_cv)
self._params['n_estimators'] = int(len(cvresult[kwargs_cv['metrics'] + \
'-mean'])/(1-1/self.params_cv['cv_folds']))
return self
示例3: test_lightgbm_pruning_callback_call
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_pruning_callback_call(cv):
# type: (bool) -> None
callback_env = partial(
lgb.callback.CallbackEnv,
model="test",
params={},
begin_iteration=0,
end_iteration=1,
iteration=1,
)
if cv:
env = callback_env(evaluation_result_list=[(("cv_agg", "binary_error", 1.0, False, 1.0))])
else:
env = callback_env(evaluation_result_list=[("validation", "binary_error", 1.0, False)])
# The pruner is deactivated.
study = optuna.create_study(pruner=DeterministicPruner(False))
trial = create_running_trial(study, 1.0)
pruning_callback = LightGBMPruningCallback(trial, "binary_error", valid_name="validation")
pruning_callback(env)
# The pruner is activated.
study = optuna.create_study(pruner=DeterministicPruner(True))
trial = create_running_trial(study, 1.0)
pruning_callback = LightGBMPruningCallback(trial, "binary_error", valid_name="validation")
with pytest.raises(optuna.TrialPruned):
pruning_callback(env)
示例4: test_lightgbm_pruning_callback
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_pruning_callback(cv):
# type: (bool) -> None
study = optuna.create_study(pruner=DeterministicPruner(True))
study.optimize(partial(objective, cv=cv), n_trials=1)
assert study.trials[0].state == optuna.trial.TrialState.PRUNED
study = optuna.create_study(pruner=DeterministicPruner(False))
study.optimize(partial(objective, cv=cv), n_trials=1)
assert study.trials[0].state == optuna.trial.TrialState.COMPLETE
assert study.trials[0].value == 1.0
# Use non default validation name.
custom_valid_name = "my_validation"
study = optuna.create_study(pruner=DeterministicPruner(False))
study.optimize(lambda trial: objective(trial, valid_name=custom_valid_name, cv=cv), n_trials=1)
assert study.trials[0].state == optuna.trial.TrialState.COMPLETE
assert study.trials[0].value == 1.0
# Check "maximize" direction.
study = optuna.create_study(pruner=DeterministicPruner(True), direction="maximize")
study.optimize(lambda trial: objective(trial, metric="auc", cv=cv), n_trials=1, catch=())
assert study.trials[0].state == optuna.trial.TrialState.PRUNED
study = optuna.create_study(pruner=DeterministicPruner(False), direction="maximize")
study.optimize(lambda trial: objective(trial, metric="auc", cv=cv), n_trials=1, catch=())
assert study.trials[0].state == optuna.trial.TrialState.COMPLETE
assert study.trials[0].value == 1.0
示例5: test_lightgbm_pruning_callback_errors
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_pruning_callback_errors(cv):
# type: (bool) -> None
# Unknown metric
study = optuna.create_study(pruner=DeterministicPruner(False))
with pytest.raises(ValueError):
study.optimize(
lambda trial: objective(trial, metric="foo_metric", cv=cv), n_trials=1, catch=()
)
if not cv:
# Unknown validation name
study = optuna.create_study(pruner=DeterministicPruner(False))
with pytest.raises(ValueError):
study.optimize(
lambda trial: objective(
trial, valid_name="valid_1", force_default_valid_names=True
),
n_trials=1,
catch=(),
)
# Check consistency of study direction.
study = optuna.create_study(pruner=DeterministicPruner(False))
with pytest.raises(ValueError):
study.optimize(lambda trial: objective(trial, metric="auc", cv=cv), n_trials=1, catch=())
study = optuna.create_study(pruner=DeterministicPruner(False), direction="maximize")
with pytest.raises(ValueError):
study.optimize(
lambda trial: objective(trial, metric="binary_error", cv=cv), n_trials=1, catch=()
)
示例6: objective
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def objective(
trial, metric="binary_error", valid_name="valid_0", force_default_valid_names=False, cv=False
):
# type: (optuna.trial.Trial, str, str, bool, bool) -> float
dtrain = lgb.Dataset([[1.0], [2.0], [3.0]], label=[1.0, 0.0, 1.0])
dtest = lgb.Dataset([[1.0]], label=[1.0])
if force_default_valid_names:
valid_names = None
else:
valid_names = [valid_name]
pruning_callback = LightGBMPruningCallback(trial, metric, valid_name=valid_name)
if cv:
lgb.cv(
{"objective": "binary", "metric": ["auc", "binary_error"]},
dtrain,
1,
verbose_eval=False,
nfold=2,
callbacks=[pruning_callback],
)
else:
lgb.train(
{"objective": "binary", "metric": ["auc", "binary_error"]},
dtrain,
1,
valid_sets=[dtest],
valid_names=valid_names,
verbose_eval=False,
callbacks=[pruning_callback],
)
return 1.0
示例7: test_lightgbm_gpu
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_gpu(booster):
import numpy as np
import pandas as pd
from h2o4gpu.util.lightgbm_dynamic import got_cpu_lgb, got_gpu_lgb
import lightgbm as lgb
X1 = np.repeat(np.arange(10), 1000)
X2 = np.repeat(np.arange(10), 1000)
np.random.shuffle(X2)
y = (X1 + np.random.randn(10000)) * (X2 + np.random.randn(10000))
data = pd.DataFrame({'y': y, 'X1': X1, 'X2': X2})
lgb_params = {'learning_rate': 0.1,
'boosting': booster,
'objective': 'regression',
'metric': 'rmse',
'feature_fraction': 0.9,
'bagging_fraction': 0.75,
'num_leaves': 31,
'bagging_freq': 1,
'min_data_per_leaf': 250, 'device_type': 'gpu', 'gpu_device_id': 0}
lgb_train = lgb.Dataset(data=data[['X1', 'X2']], label=data.y)
cv = lgb.cv(lgb_params,
lgb_train,
num_boost_round=100,
early_stopping_rounds=15,
stratified=False,
verbose_eval=50)
示例8: test_lightgbm_cpu
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_cpu(booster):
import numpy as np
import pandas as pd
from h2o4gpu.util.lightgbm_dynamic import got_cpu_lgb, got_gpu_lgb
import lightgbm as lgb
X1 = np.repeat(np.arange(10), 1000)
X2 = np.repeat(np.arange(10), 1000)
np.random.shuffle(X2)
y = (X1 + np.random.randn(10000)) * (X2 + np.random.randn(10000))
data = pd.DataFrame({'y': y, 'X1': X1, 'X2': X2})
lgb_params = {'learning_rate': 0.1,
'boosting': booster,
'objective': 'regression',
'metric': 'rmse',
'feature_fraction': 0.9,
'bagging_fraction': 0.75,
'num_leaves': 31,
'bagging_freq': 1,
'min_data_per_leaf': 250}
lgb_train = lgb.Dataset(data=data[['X1', 'X2']], label=data.y)
cv = lgb.cv(lgb_params,
lgb_train,
num_boost_round=100,
early_stopping_rounds=15,
stratified=False,
verbose_eval=50)
示例9: test_lightgbm_cpu_airlines_full
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_cpu_airlines_full(booster):
import numpy as np
import pandas as pd
from h2o4gpu.util.lightgbm_dynamic import got_cpu_lgb, got_gpu_lgb
import lightgbm as lgb
data = pd.read_csv('./open_data/allyears.1987.2013.zip',
dtype={'UniqueCarrier': 'category', 'Origin': 'category', 'Dest': 'category',
'TailNum': 'category', 'CancellationCode': 'category',
'IsArrDelayed': 'category', 'IsDepDelayed': 'category',
'DepTime': np.float32, 'CRSDepTime': np.float32, 'ArrTime': np.float32,
'CRSArrTime': np.float32, 'ActualElapsedTime': np.float32,
'CRSElapsedTime': np.float32, 'AirTime': np.float32,
'ArrDelay': np.float32, 'DepDelay': np.float32, 'Distance': np.float32,
'TaxiIn': np.float32, 'TaxiOut': np.float32, 'Diverted': np.float32,
'Year': np.int32, 'Month': np.int32, 'DayOfWeek': np.int32,
'DayofMonth': np.int32, 'Cancelled': 'category',
'CarrierDelay': np.float32, 'WeatherDelay': np.float32,
'NASDelay': np.float32, 'SecurityDelay': np.float32,
'LateAircraftDelay': np.float32})
y = data["IsArrDelayed"].cat.codes
data = data[['UniqueCarrier', 'Origin', 'Dest', 'IsDepDelayed', 'Year', 'Month',
'DayofMonth', 'DayOfWeek', 'DepTime', 'CRSDepTime',
'ArrTime', 'CRSArrTime', 'FlightNum', 'TailNum',
'ActualElapsedTime', 'CRSElapsedTime', 'AirTime', 'ArrDelay',
'DepDelay', 'Distance', 'TaxiIn', 'TaxiOut',
'Cancelled', 'CancellationCode', 'Diverted', 'CarrierDelay',
'WeatherDelay', 'NASDelay', 'SecurityDelay', 'LateAircraftDelay']]
lgb_params = {'learning_rate': 0.1,
'boosting': booster,
'objective': 'binary',
'metric': 'rmse',
'feature_fraction': 0.9,
'bagging_fraction': 0.75,
'num_leaves': 31,
'bagging_freq': 1,
'min_data_per_leaf': 250}
lgb_train = lgb.Dataset(data=data, label=y)
cv = lgb.cv(lgb_params,
lgb_train,
num_boost_round=50,
early_stopping_rounds=5,
stratified=False,
verbose_eval=10)
示例10: test_lightgbm_cpu_airlines_year
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_cpu_airlines_year(booster, year):
import numpy as np
import pandas as pd
from h2o4gpu.util.lightgbm_dynamic import got_cpu_lgb, got_gpu_lgb
import lightgbm as lgb
data = pd.read_csv('./open_data/airlines/year{0}.zip'.format(year),
dtype={'UniqueCarrier': 'category', 'Origin': 'category', 'Dest': 'category',
'TailNum': 'category', 'CancellationCode': 'category',
'IsArrDelayed': 'category', 'IsDepDelayed': 'category',
'DepTime': np.float32, 'CRSDepTime': np.float32, 'ArrTime': np.float32,
'CRSArrTime': np.float32, 'ActualElapsedTime': np.float32,
'CRSElapsedTime': np.float32, 'AirTime': np.float32,
'ArrDelay': np.float32, 'DepDelay': np.float32, 'Distance': np.float32,
'TaxiIn': np.float32, 'TaxiOut': np.float32, 'Diverted': np.float32,
'Year': np.int32, 'Month': np.int32, 'DayOfWeek': np.int32,
'DayofMonth': np.int32, 'Cancelled': 'category',
'CarrierDelay': np.float32, 'WeatherDelay': np.float32,
'NASDelay': np.float32, 'SecurityDelay': np.float32,
'LateAircraftDelay': np.float32})
y = data["IsArrDelayed"].cat.codes
data = data[['UniqueCarrier', 'Origin', 'Dest', 'IsDepDelayed', 'Year', 'Month',
'DayofMonth', 'DayOfWeek', 'DepTime', 'CRSDepTime',
'ArrTime', 'CRSArrTime', 'FlightNum', 'TailNum',
'ActualElapsedTime', 'CRSElapsedTime', 'AirTime', 'ArrDelay',
'DepDelay', 'Distance', 'TaxiIn', 'TaxiOut',
'Cancelled', 'CancellationCode', 'Diverted', 'CarrierDelay',
'WeatherDelay', 'NASDelay', 'SecurityDelay', 'LateAircraftDelay']]
lgb_params = {'learning_rate': 0.1,
'boosting': booster,
'objective': 'binary',
'metric': 'rmse',
'feature_fraction': 0.9,
'bagging_fraction': 0.75,
'num_leaves': 31,
'bagging_freq': 1,
'min_data_per_leaf': 250}
lgb_train = lgb.Dataset(data=data, label=y)
cv = lgb.cv(lgb_params,
lgb_train,
num_boost_round=50,
early_stopping_rounds=5,
stratified=False,
verbose_eval=10)
示例11: test_lightgbm_gpu_airlines_year
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import cv [as 別名]
def test_lightgbm_gpu_airlines_year(booster, year):
import numpy as np
import pandas as pd
from h2o4gpu.util.lightgbm_dynamic import got_cpu_lgb, got_gpu_lgb
import lightgbm as lgb
data = pd.read_csv('./open_data/airlines/year{0}.zip'.format(year),
dtype={'UniqueCarrier': 'category', 'Origin': 'category', 'Dest': 'category',
'TailNum': 'category', 'CancellationCode': 'category',
'IsArrDelayed': 'category', 'IsDepDelayed': 'category',
'DepTime': np.float32, 'CRSDepTime': np.float32, 'ArrTime': np.float32,
'CRSArrTime': np.float32, 'ActualElapsedTime': np.float32,
'CRSElapsedTime': np.float32, 'AirTime': np.float32,
'ArrDelay': np.float32, 'DepDelay': np.float32, 'Distance': np.float32,
'TaxiIn': np.float32, 'TaxiOut': np.float32, 'Diverted': np.float32,
'Year': np.int32, 'Month': np.int32, 'DayOfWeek': np.int32,
'DayofMonth': np.int32, 'Cancelled': 'category',
'CarrierDelay': np.float32, 'WeatherDelay': np.float32,
'NASDelay': np.float32, 'SecurityDelay': np.float32,
'LateAircraftDelay': np.float32})
y = data["IsArrDelayed"].cat.codes
data = data[['UniqueCarrier', 'Origin', 'Dest', 'IsDepDelayed', 'Year', 'Month',
'DayofMonth', 'DayOfWeek', 'DepTime', 'CRSDepTime',
'ArrTime', 'CRSArrTime', 'FlightNum', 'TailNum',
'ActualElapsedTime', 'CRSElapsedTime', 'AirTime', 'ArrDelay',
'DepDelay', 'Distance', 'TaxiIn', 'TaxiOut',
'Cancelled', 'CancellationCode', 'Diverted', 'CarrierDelay',
'WeatherDelay', 'NASDelay', 'SecurityDelay', 'LateAircraftDelay']]
lgb_params = {'learning_rate': 0.1,
'boosting': booster,
'objective': 'binary',
'metric': 'rmse',
'feature_fraction': 0.9,
'bagging_fraction': 0.75,
'num_leaves': 31,
'bagging_freq': 1,
'min_data_per_leaf': 250,
'device_type': 'gpu',
'gpu_device_id': 0}
lgb_train = lgb.Dataset(data=data, label=y)
cv = lgb.cv(lgb_params,
lgb_train,
num_boost_round=50,
early_stopping_rounds=5,
stratified=False,
verbose_eval=10)