本文整理匯總了Python中lightgbm.LGBMRegressor方法的典型用法代碼示例。如果您正苦於以下問題:Python lightgbm.LGBMRegressor方法的具體用法?Python lightgbm.LGBMRegressor怎麽用?Python lightgbm.LGBMRegressor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類lightgbm
的用法示例。
在下文中一共展示了lightgbm.LGBMRegressor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: Train
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import LGBMRegressor [as 別名]
def Train(data, modelcount, censhu, yanzhgdata):
model = lgbm.LGBMRegressor(boosting_type='gbdt', objective='regression', num_leaves=1200,
learning_rate=0.17, n_estimators=modelcount, max_depth=censhu,
metric='rmse', bagging_fraction=0.8, feature_fraction=0.8, reg_lambda=0.9)
model.fit(data[:, :-1], data[:, -1])
# 給出訓練數據的預測值
train_out = model.predict(data[:, :-1])
# 計算MSE
train_mse = mse(data[:, -1], train_out)
# 給出驗證數據的預測值
add_yan = model.predict(yanzhgdata[:, :-1])
# 計算MSE
add_mse = mse(yanzhgdata[:, -1], add_yan)
print(train_mse, add_mse)
return train_mse, add_mse
# 最終確定組合的函數
示例2: get_feature_importances
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import LGBMRegressor [as 別名]
def get_feature_importances(data, shuffle, cats=[], seed=None):
# Gather real features
train_features = [f for f in data if f not in [target] + cols2ignore]
# Shuffle target if required
y = data[target].copy()
if shuffle:
y = data[target].copy().sample(frac=1.0, random_state=seed + 4)
from h2oaicore.lightgbm_dynamic import got_cpu_lgb, got_gpu_lgb
import lightgbm as lgbm
if is_regression:
model = lgbm.LGBMRegressor(random_state=seed, importance_type=importance, **lgbm_params)
else:
model = lgbm.LGBMClassifier(random_state=seed, importance_type=importance, **lgbm_params)
y = LabelEncoder().fit_transform(y)
# Fit LightGBM in RF mode, yes it's quicker than sklearn RandomForest
model.fit(data[train_features], y, categorical_feature=cats)
# Get feature importances
imp_df = pd.DataFrame()
imp_df["feature"] = list(train_features)
imp_df["importance"] = model.feature_importances_
return imp_df
示例3: _dispatch_gbdt_class
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import LGBMRegressor [as 別名]
def _dispatch_gbdt_class(algorithm_type: str, type_of_target: str):
is_regression = type_of_target == 'continuous'
if algorithm_type == 'lgbm':
requires_lightgbm()
from lightgbm import LGBMClassifier, LGBMRegressor
return LGBMRegressor if is_regression else LGBMClassifier
elif algorithm_type == 'cat':
requires_catboost()
from catboost import CatBoostClassifier, CatBoostRegressor
return CatBoostRegressor if is_regression else CatBoostClassifier
else:
requires_xgboost()
assert algorithm_type == 'xgb'
from xgboost import XGBClassifier, XGBRegressor
return XGBRegressor if is_regression else XGBClassifier
示例4: test_04_lgbm_regressor
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import LGBMRegressor [as 別名]
def test_04_lgbm_regressor(self):
print("\ntest 04 (lgbm regressor with preprocessing)\n")
auto = pd.read_csv('nyoka/tests/auto-mpg.csv')
X = auto.drop(['mpg'], axis=1)
y = auto['mpg']
feature_names = [name for name in auto.columns if name not in ('mpg')]
target_name='mpg'
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=101)
pd.DataFrame(data=x_test, columns=feature_names).to_csv("test.csv",index=False)
pipeline_obj = Pipeline([
('mapper', DataFrameMapper([
('car name', CountVectorizer()),
(['displacement'],[StandardScaler()])
])),
('lgbmr',LGBMRegressor())
])
pipeline_obj.fit(x_train,y_train)
file_name = "test04lgbm.pmml"
lgb_to_pmml(pipeline_obj, feature_names, 'mpg', file_name)
model_name = self.adapa_utility.upload_to_zserver(file_name)
predictions, _ = self.adapa_utility.score_in_zserver(model_name, "test.csv")
predictions = numpy.array(predictions)
model_pred = pipeline_obj.predict(x_test)
self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True)
示例5: test_regressor
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import LGBMRegressor [as 別名]
def test_regressor(output, client, listen_port): # noqa
X, y, w, dX, dy, dw = _create_data('regression', output=output)
a = dlgbm.LGBMRegressor(time_out=5, local_listen_port=listen_port, seed=42)
a = a.fit(dX, dy, client=client, sample_weight=dw)
p1 = a.predict(dX, client=client)
if output != 'dataframe':
s1 = r2_score(dy, p1)
p1 = p1.compute()
b = lightgbm.LGBMRegressor(seed=42)
b.fit(X, y, sample_weight=w)
s2 = b.score(X, y)
p2 = b.predict(X)
# Scores should be the same
if output != 'dataframe':
assert_eq(s1, s2, atol=.01)
# Predictions should be roughly the same
assert_eq(y, p1, rtol=1., atol=50.)
assert_eq(y, p2, rtol=1., atol=50.)
示例6: test_regressor_quantile
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import LGBMRegressor [as 別名]
def test_regressor_quantile(output, client, listen_port, alpha): # noqa
X, y, w, dX, dy, dw = _create_data('regression', output=output)
a = dlgbm.LGBMRegressor(local_listen_port=listen_port, seed=42, objective='quantile', alpha=alpha)
a = a.fit(dX, dy, client=client, sample_weight=dw)
p1 = a.predict(dX, client=client).compute()
q1 = np.count_nonzero(y < p1) / y.shape[0]
b = lightgbm.LGBMRegressor(seed=42, objective='quantile', alpha=alpha)
b.fit(X, y, sample_weight=w)
p2 = b.predict(X)
q2 = np.count_nonzero(y < p2) / y.shape[0]
# Quantiles should be right
np.isclose(q1, alpha, atol=.1)
np.isclose(q2, alpha, atol=.1)
示例7: recspre
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import LGBMRegressor [as 別名]
def recspre(exstr, predata, datadict, zhe, count=100):
tree, te = exstr.split('-')
model = lgbm.LGBMRegressor(objective='regression', learning_rate=0.15, num_leaves=1200,
n_estimators=int(tree), max_depth=int(te),
metric='rmse', bagging_fraction=0.8, feature_fraction=0.8, reg_lambda=0.9)
model.fit(datadict[zhe]['train'][:, :-1], datadict[zhe]['train'][:, -1])
# 預測
yucede = model.predict(predata[:, :-1])
# 為了便於展示,選100條數據進行展示
zongleng = np.arange(len(yucede))
randomnum = np.random.choice(zongleng, count, replace=False)
yucede_se = list(np.array(yucede)[randomnum])
yuce_re = list(np.array(predata[:, -1])[randomnum])
# 對比
plt.figure(figsize=(17, 9))
plt.subplot(2, 1, 1)
plt.plot(list(range(len(yucede_se))), yucede_se, 'r--', label='預測', lw=2)
plt.scatter(list(range(len(yuce_re))), yuce_re, c='b', marker='.', label='真實', lw=2)
plt.xlim(-1, count + 1)
plt.legend()
plt.title('預測和真實值對比[最大樹數%d]' % int(tree))
plt.subplot(2, 1, 2)
plt.plot(list(range(len(yucede_se))), np.array(yuce_re) - np.array(yucede_se), 'k--', marker='s', label='真實-預測', lw=2)
plt.legend()
plt.title('預測和真實值相對誤差')
plt.savefig(r'C:\Users\GWT9\Desktop\duibi_lightgbm.jpg')
return '預測真實對比完畢'
# 最終的主函數
示例8: test_regression
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import LGBMRegressor [as 別名]
def test_regression():
estimator = lightgbm.LGBMRegressor(n_estimators=2, random_state=1,
max_depth=1)
utils.get_regression_model_trainer()(estimator)
assembler = assemblers.LightGBMModelAssembler(estimator)
actual = assembler.assemble()
expected = ast.BinNumExpr(
ast.IfExpr(
ast.CompExpr(
ast.FeatureRef(5),
ast.NumVal(6.918),
ast.CompOpType.GT),
ast.NumVal(24.011454621684155),
ast.NumVal(22.289277544391084)),
ast.IfExpr(
ast.CompExpr(
ast.FeatureRef(12),
ast.NumVal(9.63),
ast.CompOpType.GT),
ast.NumVal(-0.49461212269771115),
ast.NumVal(0.7174324413014594)),
ast.BinNumOpType.ADD)
assert utils.cmp_exprs(actual, expected)
示例9: LightGBM_First
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import LGBMRegressor [as 別名]
def LightGBM_First(self, data, max_depth=9, n_estimators=380):
model = lgbm.LGBMRegressor(boosting_type='gbdt', objective='regression', num_leaves=1200,
learning_rate=0.17, n_estimators=n_estimators, max_depth=max_depth,
metric='rmse', bagging_fraction=0.8, feature_fraction=0.8, reg_lambda=0.9)
model.fit(data['train'][:, :-1], data['train'][:, -1])
# 注意存儲驗證數據集結果和預測數據集結果的不同
# 訓練數據集的預測結果
xul = model.predict(data['train'][:, :-1])
# 驗證的預測結果
yanre = model.predict(data['test'][:, :-1])
# 預測的預測結果
prer = model.predict(data['predict'][:, :-1])
# 儲存
self.yanzhneg_pr.append(yanre)
self.predi.append(prer)
# 分別計算訓練、驗證、預測的誤差
# 每計算一折後,要計算訓練、驗證、預測數據的誤差
xx = self.RMSE(xul, data['train'][:, -1])
yy = self.RMSE(yanre, data['test'][:, -1])
pp = self.RMSE(prer, data['predict'][:, -1])
# 儲存誤差
self.error_dict['LightGBM'] = [xx, yy, pp]
# 驗證數據集的真實輸出結果
self.yanzhneg_real = data['test'][:, -1]
# 預測數據集的真實輸出結果
self.preal = data['predict'][:, -1]
return print('1層中的LightGBM運行完畢')
# XGBoost
示例10: test_regression_random_forest
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import LGBMRegressor [as 別名]
def test_regression_random_forest():
estimator = lightgbm.LGBMRegressor(boosting_type="rf", n_estimators=2,
random_state=1, max_depth=1,
subsample=0.7, subsample_freq=1)
utils.get_regression_model_trainer()(estimator)
assembler = assemblers.LightGBMModelAssembler(estimator)
actual = assembler.assemble()
expected = ast.BinNumExpr(
ast.BinNumExpr(
ast.IfExpr(
ast.CompExpr(
ast.FeatureRef(5),
ast.NumVal(6.954000000000001),
ast.CompOpType.GT),
ast.NumVal(37.24347877367631),
ast.NumVal(19.936999995530854)),
ast.IfExpr(
ast.CompExpr(
ast.FeatureRef(5),
ast.NumVal(6.971500000000001),
ast.CompOpType.GT),
ast.NumVal(38.48600037864964),
ast.NumVal(20.183783757300255)),
ast.BinNumOpType.ADD),
ast.NumVal(0.5),
ast.BinNumOpType.MUL)
assert utils.cmp_exprs(actual, expected)
示例11: test_03_lgbm_regressor
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import LGBMRegressor [as 別名]
def test_03_lgbm_regressor(self):
print("\ntest 03 (lgbm regressor without preprocessing)\n")
model = LGBMRegressor()
pipeline_obj = Pipeline([
("model", model)
])
pipeline_obj.fit(self.X,self.Y)
file_name = "test03lgbm.pmml"
lgb_to_pmml(pipeline_obj, self.features, 'Species', file_name)
model_name = self.adapa_utility.upload_to_zserver(file_name)
predictions, _ = self.adapa_utility.score_in_zserver(model_name, self.test_file)
model_pred = pipeline_obj.predict(self.X)
predictions = numpy.array(predictions)
self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True)
示例12: fit
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import LGBMRegressor [as 別名]
def fit(self, X, y=None, sample_weight=None, client=None, **kwargs):
if client is None:
client = default_client()
model_factory = lightgbm.LGBMRegressor
params = self.get_params(True)
model = train(client, X, y, params, model_factory, sample_weight, **kwargs)
self.set_params(**model.get_params())
self._copy_extra_params(model, self)
return self
示例13: to_local
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import LGBMRegressor [as 別名]
def to_local(self):
model = lightgbm.LGBMRegressor(**self.get_params())
self._copy_extra_params(self, model)
return model
示例14: test_regressor_local_predict
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import LGBMRegressor [as 別名]
def test_regressor_local_predict(client, listen_port): # noqa
X, y, w, dX, dy, dw = _create_data('regression', output='array')
a = dlgbm.LGBMRegressor(local_listen_port=listen_port, seed=42)
a = a.fit(dX, dy, sample_weight=dw, client=client)
p1 = a.predict(dX)
p2 = a.to_local().predict(X)
s1 = r2_score(dy, p1)
p1 = p1.compute()
s2 = a.to_local().score(X, y)
print(s1)
# Predictions and scores should be the same
assert_eq(p1, p2)
np.isclose(s1, s2)
示例15: _checkGBDTRegressor
# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import LGBMRegressor [as 別名]
def _checkGBDTRegressor(gbdt):
if hasattr(gbdt, "apply"):
return gbdt
else:
try:
from lightgbm import LGBMRegressor
if isinstance(gbdt, LGBMRegressor):
return gbdt
except ImportError:
pass
raise ValueError("GBDT class " + _class_name(gbdt) + " is not supported")