當前位置: 首頁>>代碼示例>>Python>>正文


Python lightgbm.Dataset方法代碼示例

本文整理匯總了Python中lightgbm.Dataset方法的典型用法代碼示例。如果您正苦於以下問題:Python lightgbm.Dataset方法的具體用法?Python lightgbm.Dataset怎麽用?Python lightgbm.Dataset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lightgbm的用法示例。


在下文中一共展示了lightgbm.Dataset方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: optimize_hyperparam

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import Dataset [as 別名]
def optimize_hyperparam(self, X, y, test_size=.2, n_eval=100):
        X_trn, X_val, y_trn, y_val = train_test_split(X, y, test_size=test_size, shuffle=self.shuffle)

        train_data = lgb.Dataset(X_trn, label=y_trn)
        valid_data = lgb.Dataset(X_val, label=y_val)

        def objective(hyperparams):
            model = lgb.train({**self.params, **hyperparams}, train_data, self.n_est,
                              valid_data, early_stopping_rounds=self.n_stop, verbose_eval=0)

            score = model.best_score["valid_0"][self.metric] * self.loss_sign

            return {'loss': score, 'status': STATUS_OK, 'model': model}

        trials = Trials()
        best = hyperopt.fmin(fn=objective, space=self.space, trials=trials,
                             algo=tpe.suggest, max_evals=n_eval, verbose=1,
                             rstate=self.random_state)

        hyperparams = space_eval(self.space, best)
        return hyperparams, trials 
開發者ID:jeongyoonlee,項目名稱:Kaggler,代碼行數:23,代碼來源:automl.py

示例2: run_lgb

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import Dataset [as 別名]
def run_lgb(train_X, train_y, val_X, val_y, test_X):
    params = {
        "objective": "regression",
        "metric": "rmse",
        "num_leaves": 30,
        "learning_rate": 0.1,
        "bagging_fraction": 0.7,
        "feature_fraction": 0.7,
        "bagging_frequency": 5,
        "bagging_seed": 2018,
        "verbosity": -1
    }

    lgtrain = lgb.Dataset(train_X, label=train_y)
    lgval = lgb.Dataset(val_X, label=val_y)
    evals_result = {}
    model = lgb.train(params, lgtrain, 10000, valid_sets=[lgval], early_stopping_rounds=100, verbose_eval=20,
                      evals_result=evals_result)

    pred_test_y = model.predict(test_X, num_iteration=model.best_iteration)
    return pred_test_y, model, evals_result


# Splitting the data for model training# 
開發者ID:mengli,項目名稱:MachineLearning,代碼行數:26,代碼來源:avito2.py

示例3: fit

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import Dataset [as 別名]
def fit(self, X, y, X_valid, y_valid):
        self._check_target_shape_and_type(y, 'y')
        self._check_target_shape_and_type(y_valid, 'y_valid')
        y = self._format_target(y)
        y_valid = self._format_target(y_valid)

        logger.info('LightGBM transformer, train data shape        {}'.format(X.shape))
        logger.info('LightGBM transformer, validation data shape   {}'.format(X_valid.shape))
        logger.info('LightGBM transformer, train labels shape      {}'.format(y.shape))
        logger.info('LightGBM transformer, validation labels shape {}'.format(y_valid.shape))

        data_train = lgb.Dataset(data=X,
                                 label=y,
                                 **self.dataset_parameters)
        data_valid = lgb.Dataset(data=X_valid,
                                 label=y_valid,
                                 **self.dataset_parameters)
        self.estimator = lgb.train(params=self.booster_parameters,
                                   train_set=data_train,
                                   valid_sets=[data_train, data_valid],
                                   valid_names=['data_train', 'data_valid'],
                                   **self.training_parameters)
        return self 
開發者ID:minerva-ml,項目名稱:steppy-toolkit,代碼行數:25,代碼來源:models.py

示例4: train_lgb

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import Dataset [as 別名]
def train_lgb(train_features, train_y, valid_features, valid_y, *,
              lr, num_boost_round):
    train_data = lgb.Dataset(train_features, train_y)
    valid_data = lgb.Dataset(valid_features, valid_y, reference=train_data)
    params = {
        'objective': 'binary',
        'metric': 'binary_logloss',
        'learning_rate': lr,
        'bagging_fraction': 0.8,
        'bagging_freq': 5,
        'feature_fraction': 0.9,
        'min_data_in_leaf': 20,
        'num_leaves': 41,
        'scale_pos_weight': 1.2,
        'lambda_l2': 1,
    }
    print(params)
    return lgb.train(
        params=params,
        train_set=train_data,
        num_boost_round=num_boost_round,
        early_stopping_rounds=20,
        valid_sets=[valid_data],
        verbose_eval=10,
    ) 
開發者ID:lopuhin,項目名稱:kaggle-kuzushiji-2019,代碼行數:27,代碼來源:level2.py

示例5: test_cpu

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import Dataset [as 別名]
def test_cpu(self):
        lgb_train = lgb.Dataset('/input/tests/data/lgb_train.bin')
        lgb_eval = lgb.Dataset('/input/tests/data/lgb_test.bin', reference=lgb_train)

        params = {
            'task': 'train',
            'boosting_type': 'gbdt',
            'objective': 'regression',
            'metric': {'l2', 'auc'},
            'num_leaves': 31,
            'learning_rate': 0.05,
            'feature_fraction': 0.9,
            'bagging_fraction': 0.8,
            'bagging_freq': 5,
            'verbose': 0
        }

        # Run only one round for faster test
        gbm = lgb.train(params,
                        lgb_train,
                        num_boost_round=1,
                        valid_sets=lgb_eval,
                        early_stopping_rounds=1)

        self.assertEqual(1, gbm.best_iteration) 
開發者ID:Kaggle,項目名稱:docker-python,代碼行數:27,代碼來源:test_lightgbm.py

示例6: test_gpu

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import Dataset [as 別名]
def test_gpu(self):
        lgb_train = lgb.Dataset('/input/tests/data/lgb_train.bin')
        lgb_eval = lgb.Dataset('/input/tests/data/lgb_test.bin', reference=lgb_train)

        params = {
            'boosting_type': 'gbdt',
            'objective': 'regression',
            'metric': 'auc',
            'num_leaves': 31,
            'learning_rate': 0.05,
            'feature_fraction': 0.9,
            'bagging_fraction': 0.8,
            'bagging_freq': 5,
            'verbose': 1,
            'device': 'gpu'
        }
        
        # Run only one round for faster test
        gbm = lgb.train(params,
                        lgb_train,
                        num_boost_round=1,
                        valid_sets=lgb_eval,
                        early_stopping_rounds=1)

        self.assertEqual(1, gbm.best_iteration) 
開發者ID:Kaggle,項目名稱:docker-python,代碼行數:27,代碼來源:test_lightgbm.py

示例7: train_and_predict

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import Dataset [as 別名]
def train_and_predict(self, train, valid, weight, categorical_features: List[str], target: str, params: dict) \
            -> Tuple[Booster, dict]:
        if type(train) != pd.DataFrame or type(valid) != pd.DataFrame:
            raise ValueError('Parameter train and valid must be pandas.DataFrame')

        if list(train.columns) != list(valid.columns):
            raise ValueError('Train and valid must have a same column list')

        predictors = train.columns.drop(target)
        if weight is None:
            d_train = lgb.Dataset(train[predictors], label=train[target].values)
        else:
            print(weight)
            d_train = lgb.Dataset(train[predictors], label=train[target].values, weight=weight)
        d_valid = lgb.Dataset(valid[predictors], label=valid[target].values)

        eval_results = {}
        model: Booster = lgb.train(params['model_params'],
                                   d_train,
                                   categorical_feature=categorical_features,
                                   valid_sets=[d_train, d_valid],
                                   valid_names=['train', 'valid'],
                                   evals_result=eval_results,
                                   **params['train_params'])
        return model, eval_results 
開發者ID:flowlight0,項目名稱:talkingdata-adtracking-fraud-detection,代碼行數:27,代碼來源:lightgbm.py

示例8: get_dataset

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import Dataset [as 別名]
def get_dataset(self, X, y, free_raw_data=True):
        """
        convert data into lightgbm consumable format

        Parameters
        ----------
        X: string, numpy array, pandas DataFrame, scipy.sparse or
            list of numpy arrays

        y: list, numpy 1-D array, pandas Series / one-column DataFrame \
            or None, optional (default=None)

        free_raw_data: bool, optional (default=True)

        Return
        ------
        lightgbm dataset
        """
        return lightgbm.Dataset(
            data=X, label=y,
            feature_name=self.feature_name,
            categorical_feature=self.categorical_feature,
            free_raw_data=free_raw_data) 
開發者ID:KevinLiao159,項目名稱:Quora,代碼行數:25,代碼來源:model_v1.py

示例9: fit

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import Dataset [as 別名]
def fit(self, X, y, X_valid, y_valid, feature_names, categorical_features, **kwargs):
        train = lgb.Dataset(X, label=y,
                            feature_name=feature_names,
                            categorical_feature=categorical_features
                            )
        valid = lgb.Dataset(X_valid, label=y_valid,
                            feature_name=feature_names,
                            categorical_feature=categorical_features
                            )

        evaluation_results = {}
        self.estimator = lgb.train(self.model_params,
                                   train,
                                   valid_sets=[train, valid],
                                   valid_names=['train', 'valid'],
                                   evals_result=evaluation_results,
                                   num_boost_round=self.training_params.number_boosting_rounds,
                                   early_stopping_rounds=self.training_params.early_stopping_rounds,
                                   verbose_eval=10,
                                   feval=self.evaluation_function)
        return self 
開發者ID:minerva-ml,項目名稱:open-solution-data-science-bowl-2018,代碼行數:23,代碼來源:models.py

示例10: fit

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import Dataset [as 別名]
def fit(self, X, y, X_valid, y_valid, feature_names, categorical_features, **kwargs):
        train = lgb.Dataset(X, label=y,
                            feature_name=feature_names,
                            categorical_feature=categorical_features
                            )
        valid = lgb.Dataset(X_valid, label=y_valid,
                            feature_name=feature_names,
                            categorical_feature=categorical_features
                            )

        evaluation_results = {}
        self.estimator = lgb.train(self.model_config,
                                   train, valid_sets=[train, valid], valid_names=['train', 'valid'],
                                   evals_result=evaluation_results,
                                   num_boost_round=self.training_config.number_boosting_rounds,
                                   early_stopping_rounds=self.training_config.early_stopping_rounds,
                                   verbose_eval=self.model_config.verbose,
                                   feval=self.evaluation_function)
        return self 
開發者ID:minerva-ml,項目名稱:open-solution-data-science-bowl-2018,代碼行數:21,代碼來源:misc.py

示例11: load_data

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import Dataset [as 別名]
def load_data(train_path='./data/regression.train', test_path='./data/regression.test'):
    '''
    Load or create dataset
    '''
    print('Load data...')
    df_train = pd.read_csv(train_path, header=None, sep='\t')
    df_test = pd.read_csv(test_path, header=None, sep='\t')
    num = len(df_train)
    split_num = int(0.9 * num)

    y_train = df_train[0].values
    y_test = df_test[0].values
    y_eval = y_train[split_num:]
    y_train = y_train[:split_num]

    X_train = df_train.drop(0, axis=1).values
    X_test = df_test.drop(0, axis=1).values
    X_eval = X_train[split_num:, :]
    X_train = X_train[:split_num, :]

    # create dataset for lightgbm
    lgb_train = lgb.Dataset(X_train, y_train)
    lgb_eval = lgb.Dataset(X_eval, y_eval, reference=lgb_train)

    return lgb_train, lgb_eval, X_test, y_test 
開發者ID:microsoft,項目名稱:nni,代碼行數:27,代碼來源:main.py

示例12: train_breast_cancer

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import Dataset [as 別名]
def train_breast_cancer(config):
    data, target = sklearn.datasets.load_breast_cancer(return_X_y=True)
    train_x, test_x, train_y, test_y = train_test_split(
        data, target, test_size=0.25)
    train_set = lgb.Dataset(train_x, label=train_y)
    test_set = lgb.Dataset(test_x, label=test_y)
    gbm = lgb.train(
        config,
        train_set,
        valid_sets=[test_set],
        verbose_eval=False,
        callbacks=[LightGBMCallback])
    preds = gbm.predict(test_x)
    pred_labels = np.rint(preds)
    tune.report(
        mean_accuracy=sklearn.metrics.accuracy_score(test_y, pred_labels),
        done=True) 
開發者ID:ray-project,項目名稱:ray,代碼行數:19,代碼來源:lightgbm_example.py

示例13: test_lgb_autolog_logs_metrics_with_multi_validation_data

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import Dataset [as 別名]
def test_lgb_autolog_logs_metrics_with_multi_validation_data(bst_params, train_set):
    mlflow.lightgbm.autolog()
    evals_result = {}
    # If we use [train_set, train_set] here, LightGBM ignores the first dataset.
    # To avoid that, create a new Dataset object.
    valid_sets = [train_set, lgb.Dataset(train_set.data)]
    valid_names = ['train', 'valid']
    lgb.train(bst_params, train_set, num_boost_round=10, valid_sets=valid_sets,
              valid_names=valid_names, evals_result=evals_result)
    run = get_latest_run()
    data = run.data
    client = mlflow.tracking.MlflowClient()
    for valid_name in valid_names:
        metric_key = '{}-multi_logloss'.format(valid_name)
        metric_history = [x.value for x in client.get_metric_history(run.info.run_id, metric_key)]
        assert metric_key in data.metrics
        assert len(metric_history) == 10
        assert metric_history == evals_result[valid_name]['multi_logloss'] 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:20,代碼來源:test_lightgbm_autolog.py

示例14: test_lgb_autolog_logs_metrics_with_multi_validation_data_and_metrics

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import Dataset [as 別名]
def test_lgb_autolog_logs_metrics_with_multi_validation_data_and_metrics(bst_params, train_set):
    mlflow.lightgbm.autolog()
    evals_result = {}
    params = {'metric': ['multi_error', 'multi_logloss']}
    params.update(bst_params)
    valid_sets = [train_set, lgb.Dataset(train_set.data)]
    valid_names = ['train', 'valid']
    lgb.train(params, train_set, num_boost_round=10, valid_sets=valid_sets,
              valid_names=valid_names, evals_result=evals_result)
    run = get_latest_run()
    data = run.data
    client = mlflow.tracking.MlflowClient()
    for valid_name in valid_names:
        for metric_name in params['metric']:
            metric_key = '{}-{}'.format(valid_name, metric_name)
            metric_history = [x.value for x
                              in client.get_metric_history(run.info.run_id, metric_key)]
            assert metric_key in data.metrics
            assert len(metric_history) == 10
            assert metric_history == evals_result[valid_name][metric_name] 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:22,代碼來源:test_lightgbm_autolog.py

示例15: objective

# 需要導入模塊: import lightgbm [as 別名]
# 或者: from lightgbm import Dataset [as 別名]
def objective(trial):
    data, target = sklearn.datasets.load_breast_cancer(return_X_y=True)
    train_x, valid_x, train_y, valid_y = train_test_split(data, target, test_size=0.25)
    dtrain = lgb.Dataset(train_x, label=train_y)

    param = {
        "objective": "binary",
        "metric": "binary_logloss",
        "verbosity": -1,
        "boosting_type": "gbdt",
        "lambda_l1": trial.suggest_loguniform("lambda_l1", 1e-8, 10.0),
        "lambda_l2": trial.suggest_loguniform("lambda_l2", 1e-8, 10.0),
        "num_leaves": trial.suggest_int("num_leaves", 2, 256),
        "feature_fraction": trial.suggest_uniform("feature_fraction", 0.4, 1.0),
        "bagging_fraction": trial.suggest_uniform("bagging_fraction", 0.4, 1.0),
        "bagging_freq": trial.suggest_int("bagging_freq", 1, 7),
        "min_child_samples": trial.suggest_int("min_child_samples", 5, 100),
    }

    gbm = lgb.train(param, dtrain)
    preds = gbm.predict(valid_x)
    pred_labels = np.rint(preds)
    accuracy = sklearn.metrics.accuracy_score(valid_y, pred_labels)
    return accuracy 
開發者ID:optuna,項目名稱:optuna,代碼行數:26,代碼來源:lightgbm_simple.py


注:本文中的lightgbm.Dataset方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。