當前位置: 首頁>>代碼示例>>Python>>正文


Python util.pad_center方法代碼示例

本文整理匯總了Python中librosa.util.pad_center方法的典型用法代碼示例。如果您正苦於以下問題:Python util.pad_center方法的具體用法?Python util.pad_center怎麽用?Python util.pad_center使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在librosa.util的用法示例。


在下文中一共展示了util.pad_center方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import pad_center [as 別名]
def __init__(self, filter_length=800, hop_length=200, win_length=800,
                 window='hann'):
        super(STFT, self).__init__()
        self.filter_length = filter_length
        self.hop_length = hop_length
        self.win_length = win_length
        self.window = window
        self.forward_transform = None
        scale = self.filter_length / self.hop_length
        fourier_basis = np.fft.fft(np.eye(self.filter_length))

        cutoff = int((self.filter_length / 2 + 1))
        fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
                                   np.imag(fourier_basis[:cutoff, :])])

        forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
        inverse_basis = torch.FloatTensor(
            np.linalg.pinv(scale * fourier_basis).T[:, None, :])

        if window is not None:
            assert(filter_length >= win_length)
            # get window and zero center pad it to filter_length
            fft_window = get_window(window, win_length, fftbins=True)
            fft_window = pad_center(fft_window, filter_length)
            fft_window = torch.from_numpy(fft_window).float()

            # window the bases
            forward_basis *= fft_window
            inverse_basis *= fft_window

        self.register_buffer('forward_basis', forward_basis.float())
        self.register_buffer('inverse_basis', inverse_basis.float()) 
開發者ID:alphacep,項目名稱:tn2-wg,代碼行數:34,代碼來源:stft.py

示例2: __init__

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import pad_center [as 別名]
def __init__(self, filter_length=800, hop_length=200, win_length=800,
                 window='hann'):
        super(STFT, self).__init__()
        self.filter_length = filter_length
        self.hop_length = hop_length
        self.win_length = win_length
        self.window = window
        self.forward_transform = None
        scale = self.filter_length / self.hop_length
        fourier_basis = np.fft.fft(np.eye(self.filter_length))

        cutoff = int((self.filter_length / 2 + 1))
        fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
                                   np.imag(fourier_basis[:cutoff, :])])

        forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
        inverse_basis = torch.FloatTensor(
            np.linalg.pinv(scale * fourier_basis).T[:, None, :])

        if window is not None:
            assert(win_length >= filter_length)
            # get window and zero center pad it to filter_length
            fft_window = get_window(window, win_length, fftbins=True)
            fft_window = pad_center(fft_window, filter_length)
            fft_window = torch.from_numpy(fft_window).float()

            # window the bases
            forward_basis *= fft_window
            inverse_basis *= fft_window

        self.register_buffer('forward_basis', forward_basis.float())
        self.register_buffer('inverse_basis', inverse_basis.float()) 
開發者ID:tiberiu44,項目名稱:TTS-Cube,代碼行數:34,代碼來源:stft.py

示例3: __init__

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import pad_center [as 別名]
def __init__(self, filter_length=800, hop_length=200, win_length=800,
                 window='hann'):
        super(STFT, self).__init__()
        self.filter_length = filter_length
        self.hop_length = hop_length
        self.win_length = win_length
        self.window = window
        self.forward_transform = None
        scale = self.filter_length / self.hop_length
        fourier_basis = np.fft.fft(np.eye(self.filter_length))

        cutoff = int((self.filter_length / 2 + 1))
        fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
                                   np.imag(fourier_basis[:cutoff, :])])

        forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
        inverse_basis = torch.FloatTensor(
            np.linalg.pinv(scale * fourier_basis).T[:, None, :])

        if window is not None:
            assert (filter_length >= win_length)
            # get window and zero center pad it to filter_length
            fft_window = get_window(window, win_length, fftbins=True)
            fft_window = pad_center(fft_window, filter_length)
            fft_window = torch.from_numpy(fft_window).float()

            # window the bases
            forward_basis *= fft_window
            inverse_basis *= fft_window

        self.register_buffer('forward_basis', forward_basis.float())
        self.register_buffer('inverse_basis', inverse_basis.float()) 
開發者ID:foamliu,項目名稱:Tacotron2-Mandarin,代碼行數:34,代碼來源:stft.py

示例4: __init__

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import pad_center [as 別名]
def __init__(self, filter_length, hop_length, win_length=None, window='hann'):
        super(STFT, self).__init__()
        if win_length is None:
            win_length = filter_length

        self.filter_length = filter_length
        self.hop_length = hop_length
        self.win_length = win_length
        self.window = window
        self.forward_transform = None
        fourier_basis = np.fft.fft(np.eye(self.filter_length))

        cutoff = int((self.filter_length / 2 + 1))
        fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
                                   np.imag(fourier_basis[:cutoff, :])])

        forward_basis = torch.FloatTensor(fourier_basis[:, None, :])

        if window is not None:
            assert(filter_length >= win_length)
            # get window and zero center pad it to filter_length
            fft_window = get_window(window, win_length, fftbins=True)
            fft_window = pad_center(fft_window, filter_length)
            fft_window = torch.from_numpy(fft_window).float()

            # window the bases
            forward_basis *= fft_window

        self.register_buffer('forward_basis', forward_basis.float()) 
開發者ID:jongwook,項目名稱:onsets-and-frames,代碼行數:31,代碼來源:mel.py

示例5: window_sumsquare

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import pad_center [as 別名]
def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
                     n_fft=800, dtype=np.float32, norm=None):
    """
    # from librosa 0.6
    Compute the sum-square envelope of a window function at a given hop length.

    This is used to estimate modulation effects induced by windowing
    observations in short-time fourier transforms.

    Parameters
    ----------
    window : string, tuple, number, callable, or list-like
        Window specification, as in `get_window`

    n_frames : int > 0
        The number of analysis frames

    hop_length : int > 0
        The number of samples to advance between frames

    win_length : [optional]
        The length of the window function.  By default, this matches `n_fft`.

    n_fft : int > 0
        The length of each analysis frame.

    dtype : np.dtype
        The data type of the output

    Returns
    -------
    wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
        The sum-squared envelope of the window function
    """
    if win_length is None:
        win_length = n_fft

    n = n_fft + hop_length * (n_frames - 1)
    x = np.zeros(n, dtype=dtype)

    # Compute the squared window at the desired length
    win_sq = get_window(window, win_length, fftbins=True)
    win_sq = librosa_util.normalize(win_sq, norm=norm)**2
    win_sq = librosa_util.pad_center(win_sq, n_fft)

    # Fill the envelope
    for i in range(n_frames):
        sample = i * hop_length
        x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
    return x 
開發者ID:alphacep,項目名稱:tn2-wg,代碼行數:52,代碼來源:audio_processing.py

示例6: _window_sumsquare

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import pad_center [as 別名]
def _window_sumsquare(self, window, n_frames, hop_length=200, win_length=800,
                         n_fft=800, dtype=np.float32, norm=None):
        """
        # from librosa 0.6
        Compute the sum-square envelope of a window function at a given hop length.
        This is used to estimate modulation effects induced by windowing
        observations in short-time fourier transforms.
        Parameters
        ----------
        window : string, tuple, number, callable, or list-like
            Window specification, as in `get_window`
        n_frames : int > 0
            The number of analysis frames
        hop_length : int > 0
            The number of samples to advance between frames
        win_length : [optional]
            The length of the window function.  By default, this matches `n_fft`.
        n_fft : int > 0
            The length of each analysis frame.
        dtype : np.dtype
            The data type of the output
        Returns
        -------
        wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
            The sum-squared envelope of the window function
        """
        import librosa.util as librosa_util
        if win_length is None:
            win_length = n_fft

        n = n_fft + hop_length * (n_frames - 1)
        x = np.zeros(n, dtype=dtype)

        # Compute the squared window at the desired length
        win_sq = get_window(window, win_length, fftbins=True)
        win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2
        win_sq = librosa_util.pad_center(win_sq, n_fft)

        # Fill the envelope
        for i in range(n_frames):
            sample = i * hop_length
            x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
        return x 
開發者ID:tiberiu44,項目名稱:TTS-Cube,代碼行數:45,代碼來源:stft.py

示例7: window_sumsquare

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import pad_center [as 別名]
def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
                     n_fft=800, dtype=np.float32, norm=None):
    """
    # from librosa 0.6
    Compute the sum-square envelope of a window function at a given hop length.
    This is used to estimate modulation effects induced by windowing
    observations in short-time fourier transforms.
    Parameters
    ----------
    window : string, tuple, number, callable, or list-like
        Window specification, as in `get_window`
    n_frames : int > 0
        The number of analysis frames
    hop_length : int > 0
        The number of samples to advance between frames
    win_length : [optional]
        The length of the window function.  By default, this matches `n_fft`.
    n_fft : int > 0
        The length of each analysis frame.
    dtype : np.dtype
        The data type of the output
    Returns
    -------
    wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
        The sum-squared envelope of the window function
    """
    if win_length is None:
        win_length = n_fft

    n = n_fft + hop_length * (n_frames - 1)
    x = np.zeros(n, dtype=dtype)

    # Compute the squared window at the desired length
    win_sq = get_window(window, win_length, fftbins=True)
    win_sq = librosa_util.normalize(win_sq, norm=norm)**2
    win_sq = librosa_util.pad_center(win_sq, n_fft)

    # Fill the envelope
    for i in range(n_frames):
        sample = i * hop_length
        x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
    return x 
開發者ID:pseeth,項目名稱:torch-stft,代碼行數:44,代碼來源:util.py

示例8: __init__

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import pad_center [as 別名]
def __init__(self, filter_length=1024, hop_length=512, win_length=None,
                 window='hann'):
        """
        This module implements an STFT using 1D convolution and 1D transpose convolutions.
        This is a bit tricky so there are some cases that probably won't work as working
        out the same sizes before and after in all overlap add setups is tough. Right now,
        this code should work with hop lengths that are half the filter length (50% overlap
        between frames).
        
        Keyword Arguments:
            filter_length {int} -- Length of filters used (default: {1024})
            hop_length {int} -- Hop length of STFT (restrict to 50% overlap between frames) (default: {512})
            win_length {[type]} -- Length of the window function applied to each frame (if not specified, it
                equals the filter length). (default: {None})
            window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris) 
                (default: {'hann'})
        """
        super(STFT, self).__init__()
        self.filter_length = filter_length
        self.hop_length = hop_length
        self.win_length = win_length if win_length else filter_length
        self.window = window
        self.forward_transform = None
        self.pad_amount = int(self.filter_length / 2)
        scale = self.filter_length / self.hop_length
        fourier_basis = np.fft.fft(np.eye(self.filter_length))

        cutoff = int((self.filter_length / 2 + 1))
        fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
                                   np.imag(fourier_basis[:cutoff, :])])
        forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
        inverse_basis = torch.FloatTensor(
            np.linalg.pinv(scale * fourier_basis).T[:, None, :])

        assert(filter_length >= self.win_length)
        # get window and zero center pad it to filter_length
        fft_window = get_window(window, self.win_length, fftbins=True)
        fft_window = pad_center(fft_window, filter_length)
        fft_window = torch.from_numpy(fft_window).float()

        # window the bases
        forward_basis *= fft_window
        inverse_basis *= fft_window

        self.register_buffer('forward_basis', forward_basis.float())
        self.register_buffer('inverse_basis', inverse_basis.float()) 
開發者ID:pseeth,項目名稱:torch-stft,代碼行數:48,代碼來源:stft.py

示例9: window_sumsquare

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import pad_center [as 別名]
def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
                     n_fft=800, dtype=np.float32, norm=None):
    """
    # from librosa 0.6
    Compute the sum-square envelope of a window function at a given hop length.

    This is used to estimate modulation effects induced by windowing
    observations in short-time fourier transforms.

    Parameters
    ----------
    window : string, tuple, number, callable, or list-like
        Window specification, as in `get_window`

    n_frames : int > 0
        The number of analysis frames

    hop_length : int > 0
        The number of samples to advance between frames

    win_length : [optional]
        The length of the window function.  By default, this matches `n_fft`.

    n_fft : int > 0
        The length of each analysis frame.

    dtype : np.dtype
        The data type of the output

    Returns
    -------
    wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
        The sum-squared envelope of the window function
    """
    if win_length is None:
        win_length = n_fft

    n = n_fft + hop_length * (n_frames - 1)
    x = np.zeros(n, dtype=dtype)

    # Compute the squared window at the desired length
    win_sq = get_window(window, win_length, fftbins=True)
    win_sq = librosa_util.normalize(win_sq, norm=norm)**2
    win_sq = librosa_util.pad_center(win_sq, n_fft)

    # Fill the envelope
    for i in range(n_frames):
        sample = i * hop_length
        x[sample:min(n, sample + n_fft)
          ] += win_sq[:max(0, min(n_fft, n - sample))]
    return x 
開發者ID:xcmyz,項目名稱:LightSpeech,代碼行數:53,代碼來源:audio_processing.py

示例10: window_sumsquare

# 需要導入模塊: from librosa import util [as 別名]
# 或者: from librosa.util import pad_center [as 別名]
def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
                     n_fft=800, dtype=np.float32, norm=None):
    """
    # from librosa 0.6
    Compute the sum-square envelope of a window function at a given hop length.
    This is used to estimate modulation effects induced by windowing
    observations in short-time fourier transforms.
    Parameters
    ----------
    window : string, tuple, number, callable, or list-like
        Window specification, as in `get_window`
    n_frames : int > 0
        The number of analysis frames
    hop_length : int > 0
        The number of samples to advance between frames
    win_length : [optional]
        The length of the window function.  By default, this matches `n_fft`.
    n_fft : int > 0
        The length of each analysis frame.
    dtype : np.dtype
        The data type of the output
    Returns
    -------
    wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
        The sum-squared envelope of the window function
    """
    if win_length is None:
        win_length = n_fft

    n = n_fft + hop_length * (n_frames - 1)
    x = np.zeros(n, dtype=dtype)

    # Compute the squared window at the desired length
    win_sq = get_window(window, win_length, fftbins=True)
    win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2
    win_sq = librosa_util.pad_center(win_sq, n_fft)

    # Fill the envelope
    for i in range(n_frames):
        sample = i * hop_length
        x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
    return x 
開發者ID:foamliu,項目名稱:Tacotron2-Mandarin,代碼行數:44,代碼來源:audio_processing.py


注:本文中的librosa.util.pad_center方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。