本文整理匯總了Python中librosa.to_mono方法的典型用法代碼示例。如果您正苦於以下問題:Python librosa.to_mono方法的具體用法?Python librosa.to_mono怎麽用?Python librosa.to_mono使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類librosa
的用法示例。
在下文中一共展示了librosa.to_mono方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_pitch_shift
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import to_mono [as 別名]
def test_pitch_shift():
shift_amount = 4
step_size = 24
pitch_shift_audio = pitch_shift(mono_audio, shift_amount, step_size=step_size)
test_pitch_shift = librosa.effects.pitch_shift(
librosa.to_mono(mono_audio.raw_samples),
mono_audio.sample_rate,
shift_amount,
bins_per_octave=step_size,
)
test_pitch_shift_audio = Audio(
raw_samples=test_pitch_shift, sample_rate=mono_audio.sample_rate
)
assert np.allclose(
pitch_shift_audio.raw_samples,
test_pitch_shift_audio.raw_samples,
rtol=1e-3,
atol=1e-4,
)
示例2: harmonic_separation
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import to_mono [as 別名]
def harmonic_separation(audio, margin=3.0):
"""
Wraps librosa's `harmonic` function, and returns a new Audio object.
Note that this folds to mono.
Parameters
---------
audio : Audio
The Audio object to act on.
margin : float
The larger the margin, the larger the separation.
The default is `3.0`.
"""
harmonic = librosa.effects.harmonic(
librosa.to_mono(audio.raw_samples), margin=margin
)
harmonic_audio = Audio(raw_samples=harmonic, sample_rate=audio.sample_rate)
return harmonic_audio
示例3: percussive_separation
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import to_mono [as 別名]
def percussive_separation(audio, margin=3.0):
"""
Wraps librosa's `percussive` function, and returns a new Audio object.
Note that this folds to mono.
Parameters
---------
audio : Audio
The Audio object to act on.
margin : float
The larger the margin, the larger the separation.
The default is `3.0`.
"""
percussive = librosa.effects.percussive(
librosa.to_mono(audio.raw_samples), margin=margin
)
percussive_audio = Audio(raw_samples=percussive, sample_rate=audio.sample_rate)
return percussive_audio
示例4: process_buffer
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import to_mono [as 別名]
def process_buffer(buffer, n_channels):
"""
Merge the read blocks and resample if necessary.
Args:
buffer (list): A list of blocks of samples.
n_channels (int): The number of channels of the input data.
Returns:
np.array: The samples
"""
samples = np.concatenate(buffer)
if n_channels > 1:
samples = samples.reshape((-1, n_channels)).T
samples = librosa.to_mono(samples)
return samples
示例5: load_wavs
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import to_mono [as 別名]
def load_wavs(filenames, sr):
wavs_mono = list()
wavs_src1 = list()
wavs_src2 = list()
for filename in filenames:
wav, _ = librosa.load(filename, sr = sr, mono = False)
assert (wav.ndim == 2) and (wav.shape[0] == 2), 'Require wav to have two channels'
wav_mono = librosa.to_mono(wav) * 2 # Cancelling average
wav_src1 = wav[0, :]
wav_src2 = wav[1, :]
wavs_mono.append(wav_mono)
wavs_src1.append(wav_src1)
wavs_src2.append(wav_src2)
return wavs_mono, wavs_src1, wavs_src2
示例6: get_random_wav
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import to_mono [as 別名]
def get_random_wav(filename, sr, duration):
# Get a random range from wav
wav, _ = librosa.load(filename, sr = sr, mono = False)
print(wav)
assert (wav.ndim == 2) and (wav.shape[0] == 2), 'Require wav to have two channels'
wav_pad = pad_wav(wav = wav, sr = sr, duration = duration)
wav_sample = sample_range(wav = wav, sr = sr, duration = duration)
wav_sample_mono = librosa.to_mono(wav_sample)
wav_sample_src1 = wav_sample[0, :]
wav_sample_src2 = wav_sample[1, :]
return wav_sample_mono, wav_sample_src1, wav_sample_src2
示例7: test_time_stretch
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import to_mono [as 別名]
def test_time_stretch():
stretch_amount = 1.5
time_stretch_audio = time_stretch(mono_audio, stretch_amount)
test_time_stretch = librosa.effects.time_stretch(
librosa.to_mono(mono_audio.raw_samples), stretch_amount
)
test_time_stretch_audio = Audio(
raw_samples=test_time_stretch, sample_rate=mono_audio.sample_rate
)
assert np.allclose(
time_stretch_audio.raw_samples,
test_time_stretch_audio.raw_samples,
rtol=1e-3,
atol=1e-4,
)
示例8: test_harmonic
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import to_mono [as 別名]
def test_harmonic():
harmonic_audio = harmonic_separation(mono_audio)
test_harmonic = librosa.effects.harmonic(
librosa.to_mono(mono_audio.raw_samples), margin=3.0
)
test_harmonic_audio = Audio(
raw_samples=test_harmonic, sample_rate=mono_audio.sample_rate
)
assert np.allclose(
harmonic_audio.raw_samples,
test_harmonic_audio.raw_samples,
rtol=1e-3,
atol=1e-4,
)
示例9: test_percussive
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import to_mono [as 別名]
def test_percussive():
percussive_audio = percussive_separation(mono_audio)
test_percussive = librosa.effects.percussive(
librosa.to_mono(mono_audio.raw_samples), margin=3.0
)
test_percussive_audio = Audio(
raw_samples=test_percussive, sample_rate=mono_audio.sample_rate
)
assert np.allclose(
percussive_audio.raw_samples,
test_percussive_audio.raw_samples,
rtol=1e-3,
atol=1e-4,
)
示例10: pitch_shift
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import to_mono [as 別名]
def pitch_shift(audio, steps, step_size=12):
"""
Wraps librosa's `pitch_shift` function, and returns a new Audio object.
Note that this folds to mono.
Parameters
---------
audio : Audio
The Audio object to act on.
steps : float
The pitch shift amount.
The default unit is semitones, as set by `step_size`.
step_size : float > 0
The number of equal-tempered steps per octave.
The default is semitones, as set by `step_size=12`.
Quarter-tones, for example, would be `step_size=24`.
"""
shifted = librosa.effects.pitch_shift(
librosa.to_mono(audio.raw_samples),
audio.sample_rate,
steps,
bins_per_octave=step_size,
)
stretched_audio = Audio(raw_samples=shifted, sample_rate=audio.sample_rate)
return stretched_audio
示例11: __init__
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import to_mono [as 別名]
def __init__(
self,
file_path=None,
raw_samples=None,
convert_to_mono=False,
sample_rate=44100,
analysis_sample_rate=22050,
):
"""
Audio constructor.
Opens a file path, loads the audio with librosa, and prepares the features
Parameters
----------
file_path: string
path to the audio file to load
raw_samples: np.array
samples to use for audio output
convert_to_mono: boolean
(optional) converts the file to mono on loading
sample_rate: number > 0 [scalar]
(optional) sample rate to pass to librosa.
Returns
------
An Audio object
"""
if file_path:
y, sr = librosa.load(file_path, mono=convert_to_mono, sr=sample_rate)
elif raw_samples is not None:
# This assumes that we're passing in raw_samples
# directly from another Audio's raw_samples.
y = raw_samples
sr = sample_rate
self.file_path = file_path
self.sample_rate = float(sr)
self.analysis_sample_rate = float(analysis_sample_rate)
self.num_channels = y.ndim
self.duration = librosa.get_duration(y=y, sr=sr)
self.analysis_samples = librosa.resample(
librosa.to_mono(y), sr, self.analysis_sample_rate, res_type='kaiser_best'
)
self.raw_samples = np.atleast_2d(y)
self.zero_indexes = self._create_zero_indexes()
self.features = self._create_features()
self.timings = self._create_timings()
示例12: pncc
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import to_mono [as 別名]
def pncc(audio_wave, n_fft=512, sr=16000, winlen=0.020, winstep=0.010,
n_mels=128, n_pncc=13, weight_N=4, power=2):
pre_emphasis_signal = scipy.signal.lfilter([1.0, -0.97], 1, audio_wave)
mono_wave = to_mono(pre_emphasis_signal.T)
stft_pre_emphasis_signal = np.abs(stft(mono_wave,
n_fft=n_fft,
hop_length=int(sr * winstep),
win_length=int(sr * winlen),
window=np.ones(int(sr * winlen)),
center=False)) ** power
mel_filter = np.abs(filters.mel(sr, n_fft=n_fft, n_mels=n_mels)) ** power
power_stft_signal = np.dot(stft_pre_emphasis_signal.T, mel_filter.T)
medium_time_power = medium_time_power_calculation(power_stft_signal)
lower_envelope = asymmetric_lawpass_filtering(
medium_time_power, 0.999, 0.5)
subtracted_lower_envelope = medium_time_power - lower_envelope
rectified_signal = halfwave_rectification(subtracted_lower_envelope)
floor_level = asymmetric_lawpass_filtering(rectified_signal)
temporal_masked_signal = temporal_masking(rectified_signal)
final_output = switch_excitation_or_non_excitation(
temporal_masked_signal, floor_level, lower_envelope,
medium_time_power)
spectral_weight_smoothing = weight_smoothing(
final_output, medium_time_power, L=n_mels)
transfer_function = time_frequency_normalization(
power_stft_signal,
spectral_weight_smoothing)
normalized_power = mean_power_normalization(
transfer_function, final_output, L=n_mels)
power_law_nonlinearity = power_function_nonlinearity(normalized_power)
dct = np.dot(power_law_nonlinearity, filters.dct(
n_pncc, power_law_nonlinearity.shape[1]).T)
return dct
示例13: wav_data_to_samples
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import to_mono [as 別名]
def wav_data_to_samples(wav_data, sample_rate):
"""Read PCM-formatted WAV data and return a NumPy array of samples.
Uses scipy to read and librosa to process WAV data. Audio will be converted to
mono if necessary.
Args:
wav_data: WAV audio data to read.
sample_rate: The number of samples per second at which the audio will be
returned. Resampling will be performed if necessary.
Returns:
A numpy array of audio samples, single-channel (mono) and sampled at the
specified rate, in float32 format.
Raises:
AudioIOReadError: If scipy is unable to read the WAV data.
AudioIOError: If audio processing fails.
"""
try:
# Read the wav file, converting sample rate & number of channels.
native_sr, y = scipy.io.wavfile.read(six.BytesIO(wav_data))
except Exception as e: # pylint: disable=broad-except
raise AudioIOReadError(e)
if y.dtype == np.int16:
# Convert to float32.
y = int16_samples_to_float32(y)
elif y.dtype == np.float32:
# Already float32.
pass
else:
raise AudioIOError(
'WAV file not 16-bit or 32-bit float PCM, unsupported')
try:
# Convert to mono and the desired sample rate.
if y.ndim == 2 and y.shape[1] == 2:
y = y.T
y = librosa.to_mono(y)
if native_sr != sample_rate:
y = librosa.resample(y, native_sr, sample_rate)
except Exception as e: # pylint: disable=broad-except
raise AudioIOError(e)
return y
示例14: __sox
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import to_mono [as 別名]
def __sox(y, sr, *args):
"""Execute sox
Parameters
----------
y : np.ndarray
Audio time series
sr : int > 0
Sampling rate of `y`
*args
Additional arguments to sox
Returns
-------
y_out : np.ndarray
`y` after sox transformation
"""
assert sr > 0
fdesc, infile = tempfile.mkstemp(suffix=".wav")
os.close(fdesc)
fdesc, outfile = tempfile.mkstemp(suffix=".wav")
os.close(fdesc)
# Dump the audio
psf.write(infile, y, sr)
try:
arguments = ["sox", infile, outfile, "-q"]
arguments.extend(args)
subprocess.check_call(arguments)
y_out, sr = psf.read(outfile)
y_out = y_out.T
if y.ndim == 1:
y_out = librosa.to_mono(y_out)
finally:
os.unlink(infile)
os.unlink(outfile)
return y_out
示例15: slice_clip
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import to_mono [as 別名]
def slice_clip(filename, start, stop, n_samples, sr, mono=True):
"""Slice a fragment of audio from a file.
This uses pysoundfile to efficiently seek without
loading the entire stream.
Parameters
----------
filename : str
Path to the input file
start : int
The sample index of `filename` at which the audio fragment should start
stop : int
The sample index of `filename` at which the audio fragment should stop (e.g. y = audio[start:stop])
n_samples : int > 0
The number of samples to load
sr : int > 0
The target sampling rate
mono : bool
Ensure monophonic audio
Returns
-------
y : np.ndarray [shape=(n_samples,)]
A fragment of audio sampled from `filename`
Raises
------
ValueError
If the source file is shorter than the requested length
"""
with psf.SoundFile(str(filename), mode="r") as soundf:
n_target = stop - start
soundf.seek(start)
y = soundf.read(n_target).T
if mono:
y = librosa.to_mono(y)
# Resample to initial sr
y = librosa.resample(y, soundf.samplerate, sr)
# Clip to the target length exactly
y = librosa.util.fix_length(y, n_samples)
return y