當前位置: 首頁>>代碼示例>>Python>>正文


Python librosa.power_to_db方法代碼示例

本文整理匯總了Python中librosa.power_to_db方法的典型用法代碼示例。如果您正苦於以下問題:Python librosa.power_to_db方法的具體用法?Python librosa.power_to_db怎麽用?Python librosa.power_to_db使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在librosa的用法示例。


在下文中一共展示了librosa.power_to_db方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: extract_logmel

# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import power_to_db [as 別名]
def extract_logmel(y, sr, size=3):
    """
    extract log mel spectrogram feature
    :param y: the input signal (audio time series)
    :param sr: sample rate of 'y'
    :param size: the length (seconds) of random crop from original audio, default as 3 seconds
    :return: log-mel spectrogram feature
    """
    # normalization
    y = y.astype(np.float32)
    normalization_factor = 1 / np.max(np.abs(y))
    y = y * normalization_factor

    # random crop
    start = random.randint(0, len(y) - size * sr)
    y = y[start: start + size * sr]

    # extract log mel spectrogram #####
    melspectrogram = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=2048, hop_length=1024, n_mels=60)
    logmelspec = librosa.power_to_db(melspectrogram)

    return logmelspec 
開發者ID:JasonZhang156,項目名稱:Sound-Recognition-Tutorial,代碼行數:24,代碼來源:feature_extraction.py

示例2: extract_mfcc

# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import power_to_db [as 別名]
def extract_mfcc(y, sr, size=3):
    """
    extract MFCC feature
    :param y: np.ndarray [shape=(n,)], real-valued the input signal (audio time series)
    :param sr: sample rate of 'y'
    :param size: the length (seconds) of random crop from original audio, default as 3 seconds
    :return: MFCC feature
    """
    # normalization
    y = y.astype(np.float32)
    normalization_factor = 1 / np.max(np.abs(y))
    y = y * normalization_factor

    # random crop
    start = random.randint(0, len(y) - size * sr)
    y = y[start: start + size * sr]

    # extract log mel spectrogram #####
    melspectrogram = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=2048, hop_length=1024)
    mfcc = librosa.feature.mfcc(S=librosa.power_to_db(melspectrogram), n_mfcc=20)
    mfcc_delta = librosa.feature.delta(mfcc)
    mfcc_delta_delta = librosa.feature.delta(mfcc_delta)
    mfcc_comb = np.concatenate([mfcc, mfcc_delta, mfcc_delta_delta], axis=0)

    return mfcc_comb 
開發者ID:JasonZhang156,項目名稱:Sound-Recognition-Tutorial,代碼行數:27,代碼來源:feature_extraction.py

示例3: prepare_testset

# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import power_to_db [as 別名]
def prepare_testset(dataset_name):
    spec_folder=common.SPECTRO_PATH+SPECTRO_FOLDER+"/"
    test_folder=common.DATA_DIR+'/spectro_%s_testset/' % dataset_name
    if not os.path.exists(test_folder):
        os.makedirs(test_folder)
    items = open(common.DATASETS_DIR+'/items_index_test_%s.tsv' % dataset_name).read().splitlines()
    testset = []
    testset_index = []
    for t,track_id in enumerate(items):
        if MSD:
            msd_folder = track_id[2]+"/"+track_id[3]+"/"+track_id[4]+"/"
        else:
            msd_folder = ""
        file = spec_folder+msd_folder+track_id+".pk"
        try:
            spec = pickle.load(open(file))
            spec = librosa.power_to_db(np.abs(spec) ** 2,ref=np.max).T
            pickle.dump(spec, open(test_folder+track_id+".pk","wb"))
            testset.append(track_id)
            testset_index.append(t)
            if t%1000==0:
                print t
        except:
            print "no exist", file 
開發者ID:sergiooramas,項目名稱:tartarus,代碼行數:26,代碼來源:create_patches.py

示例4: compute_spectrograms

# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import power_to_db [as 別名]
def compute_spectrograms(filename):
    out_rate = 12000
    N_FFT = 512
    HOP_LEN = 256

    frames, rate = librosa.load(filename, sr=out_rate, mono=True)
    if len(frames) < out_rate*3:
        # if less then 3 second - can't process
        raise Exception("Audio duration is too short")

    logam = librosa.power_to_db
    melgram = librosa.feature.melspectrogram
    x = logam(melgram(y=frames, sr=out_rate, hop_length=HOP_LEN,
                      n_fft=N_FFT, n_mels=N_MEL_BANDS) ** 2,
              ref=1.0)

    # now going through spectrogram with the stride of the segment duration
    for start_idx in range(0, x.shape[1] - SEGMENT_DUR + 1, SEGMENT_DUR):
        yield x[:, start_idx:start_idx + SEGMENT_DUR] 
開發者ID:Veleslavia,項目名稱:EUSIPCO2017,代碼行數:21,代碼來源:singlelayer.py

示例5: compute

# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import power_to_db [as 別名]
def compute(self, chunk, sampling_rate, corpus=None, utterance=None):
        # Compute mel-spetrogram
        power_spec = np.abs(spectral.stft_from_frames(chunk.data.T)) ** 2
        mel = np.abs(librosa.feature.melspectrogram(S=power_spec, n_mels=self.n_mels, sr=sampling_rate))
        mel_power = librosa.power_to_db(mel)

        # Compute onset strengths
        oenv = librosa.onset.onset_strength(S=mel_power, center=False)

        # Switch dimensions and add dimension to have frames
        oenv = oenv.T.reshape(oenv.shape[0], -1)

        # Remove context
        oenv = oenv[chunk.left_context:oenv.shape[0] - chunk.right_context]

        return oenv 
開發者ID:ynop,項目名稱:audiomate,代碼行數:18,代碼來源:onset.py

示例6: test_compute_online

# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import power_to_db [as 別名]
def test_compute_online(self):
        # Data: 41523 samples, 16 kHz
        # yields 40 frames with frame-size 2048 and hop-size 1024
        test_file_path = resources.sample_wav_file('wav_1.wav')
        y, sr = librosa.load(test_file_path, sr=None)

        # EXPECTED
        y_pad = np.pad(y, (0, 1024), mode='constant', constant_values=0)
        S = np.abs(librosa.stft(y_pad, center=False, n_fft=2048, hop_length=1024)) ** 2
        S = librosa.feature.melspectrogram(S=S, n_mels=128, sr=sr)
        S = librosa.power_to_db(S)
        onsets = librosa.onset.onset_strength(S=S, center=False)
        exp_tgram = librosa.feature.tempogram(onset_envelope=onsets, sr=sr, win_length=4, center=True).T

        # ACTUAL
        test_file = tracks.FileTrack('idx', test_file_path)
        tgram_step = pipeline.Tempogram(win_length=4)
        tgram_gen = tgram_step.process_track_online(test_file, 2048, 1024, chunk_size=5)

        chunks = list(tgram_gen)
        tgrams = np.vstack(chunks)

        assert np.allclose(tgrams, exp_tgram) 
開發者ID:ynop,項目名稱:audiomate,代碼行數:25,代碼來源:test_rythm.py

示例7: test_compute_cleanup_after_one_utterance

# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import power_to_db [as 別名]
def test_compute_cleanup_after_one_utterance(self):
        test_file_path = resources.sample_wav_file('wav_1.wav')
        y, sr = librosa.load(test_file_path, sr=None)
        frames = librosa.util.frame(y, frame_length=2048, hop_length=1024).T

        # EXPECTED
        S = np.abs(librosa.stft(y, center=False, n_fft=2048, hop_length=1024)) ** 2
        S = librosa.feature.melspectrogram(S=S, n_mels=128, sr=sr)
        S = librosa.power_to_db(S)
        onsets = librosa.onset.onset_strength(S=S, center=False)
        exp_tgram = librosa.feature.tempogram(onset_envelope=onsets, sr=sr, win_length=11, center=True).T

        # ACTUAL
        tgram_step = pipeline.Tempogram(win_length=11)

        # FIRST RUN
        tgrams = tgram_step.process_frames(frames, sr, last=True)

        assert np.allclose(tgrams, exp_tgram)

        # SECOND RUN
        tgrams = tgram_step.process_frames(frames, sr, last=True)

        assert np.allclose(tgrams, exp_tgram) 
開發者ID:ynop,項目名稱:audiomate,代碼行數:26,代碼來源:test_rythm.py

示例8: test_compute

# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import power_to_db [as 別名]
def test_compute(self):
        test_file_path = resources.sample_wav_file('wav_1.wav')
        y, sr = librosa.load(test_file_path, sr=None)
        frames = librosa.util.frame(y, frame_length=2048, hop_length=1024).T

        # EXPECTED
        S = np.abs(librosa.stft(y, center=False, n_fft=2048, hop_length=1024)) ** 2
        S = librosa.feature.melspectrogram(S=S, n_mels=128, sr=sr)
        S = librosa.power_to_db(S)
        exp_onsets = librosa.onset.onset_strength(S=S, center=False).T
        exp_onsets = exp_onsets.reshape(exp_onsets.shape[0], 1)

        # ACTUAL
        onset = pipeline.OnsetStrength()
        onsets = onset.process_frames(frames, sr, last=True)

        assert np.allclose(onsets, exp_onsets) 
開發者ID:ynop,項目名稱:audiomate,代碼行數:19,代碼來源:test_onset.py

示例9: test_compute_online

# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import power_to_db [as 別名]
def test_compute_online(self):
        test_file_path = resources.sample_wav_file('wav_1.wav')
        y, sr = librosa.load(test_file_path, sr=None)

        # EXPECTED
        y_pad = np.pad(y, (0, 1024), mode='constant', constant_values=0)
        S = np.abs(librosa.stft(y_pad, center=False, n_fft=2048, hop_length=1024)) ** 2
        S = librosa.feature.melspectrogram(S=S, n_mels=128, sr=sr)
        S = librosa.power_to_db(S)
        exp_onsets = librosa.onset.onset_strength(S=S, center=False).T
        exp_onsets = exp_onsets.reshape(exp_onsets.shape[0], 1)

        # ACTUAL
        test_file = tracks.FileTrack('idx', test_file_path)
        onset = pipeline.OnsetStrength()
        onset_gen = onset.process_track_online(test_file, 2048, 1024, chunk_size=5)

        chunks = list(onset_gen)
        onsets = np.vstack(chunks)

        print(onsets.shape, exp_onsets.shape)

        assert np.allclose(onsets, exp_onsets) 
開發者ID:ynop,項目名稱:audiomate,代碼行數:25,代碼來源:test_onset.py

示例10: calc_power_spectrogram

# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import power_to_db [as 別名]
def calc_power_spectrogram(audio_data, samplerate, n_mels=128, n_fft=512, hop_length=160):
  """
  Calculate power spectrogram from the given raw audio data

  Args:
    audio_data: numpyarray of raw audio wave
    samplerate: the sample rate of the `audio_data`
    n_mels: the number of mels to generate
    n_fft: the window size of the fft
    hop_length: the hop length for the window

  Returns: the spectrogram in the form [time, n_mels]

  """
  spectrogram = librosa.feature.melspectrogram(audio_data, sr=samplerate, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)

  # convert to log scale (dB)
  log_spectrogram = librosa.power_to_db(spectrogram, ref=np.max)

  # normalize
  normalized_spectrogram = normalize(log_spectrogram)

  return normalized_spectrogram.T 
開發者ID:timediv,項目名稱:speechT,代碼行數:25,代碼來源:preprocessing.py

示例11: wav_to_spec

# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import power_to_db [as 別名]
def wav_to_spec(wav_audio, hparams):
  """Transforms the contents of a wav file into a series of spectrograms."""
  if hparams.spec_type == 'raw':
    spec = _wav_to_framed_samples(wav_audio, hparams)
  else:
    if hparams.spec_type == 'cqt':
      spec = _wav_to_cqt(wav_audio, hparams)
    elif hparams.spec_type == 'mel':
      spec = _wav_to_mel(wav_audio, hparams)
    else:
      raise ValueError('Invalid spec_type: {}'.format(hparams.spec_type))

    if hparams.spec_log_amplitude:
      spec = librosa.power_to_db(spec)

  return spec 
開發者ID:magenta,項目名稱:magenta,代碼行數:18,代碼來源:data.py

示例12: visualization_tensor_spectrogram

# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import power_to_db [as 別名]
def visualization_tensor_spectrogram(mel_spectrogram, title):
    """visualizing first one result of SpecAugment
    # Arguments:
      mel_spectrogram(ndarray): mel_spectrogram to visualize.
      title(String): plot figure's title
    """

    # session for plotting
    sess = tf.InteractiveSession()
    mel_spectrogram = mel_spectrogram.eval()

    # Show mel-spectrogram using librosa's specshow.
    plt.figure(figsize=(10, 4))
    librosa.display.specshow(librosa.power_to_db(mel_spectrogram[0, :, :, 0], ref=np.max), y_axis='mel', fmax=8000,
                             x_axis='time')
    # plt.colorbar(format='%+2.0f dB')
    plt.title(title)
    plt.tight_layout()
    plt.show() 
開發者ID:foamliu,項目名稱:Speech-Transformer,代碼行數:21,代碼來源:spec_augment_tensorflow.py

示例13: plot_mel_spectrogram

# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import power_to_db [as 別名]
def plot_mel_spectrogram(audio_data,
                         sr,
                         nfft=None,
                         melbands=64,
                         delta=None,
                         **kwargs):
    spectrogram = y_limited_spectrogram(audio_data,
                                        sr=sr,
                                        nfft=nfft,
                                        ylim=kwargs['ylim'])
    kwargs['scale'] = 'mel'
    if delta:
        spectrogram = librosa.feature.delta(spectrogram, order=delta)
    spectrogram = librosa.feature.melspectrogram(S=np.abs(spectrogram)**2,
                                                 sr=sr,
                                                 n_mels=melbands)
    spectrogram = librosa.power_to_db(spectrogram, ref=np.max, top_db=None)
    return _create_plot(spectrogram, sr, nfft, **kwargs) 
開發者ID:DeepSpectrum,項目名稱:DeepSpectrum,代碼行數:20,代碼來源:plotting.py

示例14: audio_to_melspectrogram

# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import power_to_db [as 別名]
def audio_to_melspectrogram(audio):
    spectrogram = librosa.feature.melspectrogram(audio,
                                                 sr=config.sampling_rate,
                                                 n_mels=config.n_mels,
                                                 hop_length=config.hop_length,
                                                 n_fft=config.n_fft,
                                                 fmin=config.fmin,
                                                 fmax=config.fmax)
    spectrogram = librosa.power_to_db(spectrogram)
    spectrogram = spectrogram.astype(np.float32)
    return spectrogram 
開發者ID:lRomul,項目名稱:argus-freesound,代碼行數:13,代碼來源:audio.py

示例15: compute

# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import power_to_db [as 別名]
def compute(self, chunk, sampling_rate, corpus=None, utterance=None):
        power_spec = np.abs(stft_from_frames(chunk.data.T)) ** 2

        mel = librosa.feature.melspectrogram(S=power_spec, n_mels=self.n_mels, sr=sampling_rate)
        mel_power = librosa.power_to_db(mel)
        mfcc = librosa.feature.mfcc(S=mel_power, n_mfcc=self.n_mfcc)

        return mfcc.T 
開發者ID:ynop,項目名稱:audiomate,代碼行數:10,代碼來源:spectral.py


注:本文中的librosa.power_to_db方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。