本文整理匯總了Python中librosa.istft方法的典型用法代碼示例。如果您正苦於以下問題:Python librosa.istft方法的具體用法?Python librosa.istft怎麽用?Python librosa.istft使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類librosa
的用法示例。
在下文中一共展示了librosa.istft方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: spectrogramToAudioFile
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import istft [as 別名]
def spectrogramToAudioFile(magnitude, fftWindowSize, hopSize, phaseIterations=10, phase=None, length=None):
'''
Computes an audio signal from the given magnitude spectrogram, and optionally an initial phase.
Griffin-Lim is executed to recover/refine the given the phase from the magnitude spectrogram.
:param magnitude: Magnitudes to be converted to audio
:param fftWindowSize: Size of FFT window used to create magnitudes
:param hopSize: Hop size in frames used to create magnitudes
:param phaseIterations: Number of Griffin-Lim iterations to recover phase
:param phase: If given, starts ISTFT with this particular phase matrix
:param length: If given, audio signal is clipped/padded to this number of frames
:return:
'''
if phase is not None:
if phaseIterations > 0:
# Refine audio given initial phase with a number of iterations
return reconPhase(magnitude, fftWindowSize, hopSize, phaseIterations, phase, length)
# reconstructing the new complex matrix
stftMatrix = magnitude * np.exp(phase * 1j) # magnitude * e^(j*phase)
audio = librosa.istft(stftMatrix, hop_length=hopSize, length=length)
else:
audio = reconPhase(magnitude, fftWindowSize, hopSize, phaseIterations)
return audio
示例2: griffin_lim
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import istft [as 別名]
def griffin_lim(mag, phase_angle, n_fft, hop, num_iters):
"""Iterative algorithm for phase retrieval from a magnitude spectrogram.
Args:
mag: Magnitude spectrogram.
phase_angle: Initial condition for phase.
n_fft: Size of the FFT.
hop: Stride of FFT. Defaults to n_fft/2.
num_iters: Griffin-Lim iterations to perform.
Returns:
audio: 1-D array of float32 sound samples.
"""
fft_config = dict(n_fft=n_fft, win_length=n_fft, hop_length=hop, center=True)
ifft_config = dict(win_length=n_fft, hop_length=hop, center=True)
complex_specgram = inv_magphase(mag, phase_angle)
for i in range(num_iters):
audio = librosa.istft(complex_specgram, **ifft_config)
if i != num_iters - 1:
complex_specgram = librosa.stft(audio, **fft_config)
_, phase = librosa.magphase(complex_specgram)
phase_angle = np.angle(phase)
complex_specgram = inv_magphase(mag, phase_angle)
return audio
示例3: inv_linear_spectrogram
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import istft [as 別名]
def inv_linear_spectrogram(linear_spectrogram, hparams):
'''Converts linear spectrogram to waveform using librosa'''
if hparams.signal_normalization:
D = _denormalize(linear_spectrogram, hparams)
else:
D = linear_spectrogram
S = _db_to_amp(D + hparams.ref_level_db)**(1/hparams.magnitude_power) #Convert back to linear
if hparams.use_lws:
processor = _lws_processor(hparams)
D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
y = processor.istft(D).astype(np.float32)
return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
else:
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
示例4: inv_mel_spectrogram
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import istft [as 別名]
def inv_mel_spectrogram(mel_spectrogram, hparams):
'''Converts mel spectrogram to waveform using librosa'''
if hparams.signal_normalization:
D = _denormalize(mel_spectrogram, hparams)
else:
D = mel_spectrogram
S = _mel_to_linear(_db_to_amp(D + hparams.ref_level_db)**(1/hparams.magnitude_power), hparams) # Convert back to linear
if hparams.use_lws:
processor = _lws_processor(hparams)
D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
y = processor.istft(D).astype(np.float32)
return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
else:
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
###########################################################################################
# tensorflow Griffin-Lim
# Thanks to @begeekmyfriend: https://github.com/begeekmyfriend/Tacotron-2/blob/mandarin-new/datasets/audio.py
示例5: _griffinlim
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import istft [as 別名]
def _griffinlim(self, spectrogram, n_iter=100, window='hann', n_fft=2048, hop_length=-1, verbose=False):
if hop_length == -1:
hop_length = n_fft // 4
angles = np.exp(2j * np.pi * np.random.rand(*spectrogram.shape))
t = tqdm(range(n_iter), ncols=100, mininterval=2.0, disable=not verbose)
for i in t:
full = np.abs(spectrogram).astype(np.complex) * angles
inverse = librosa.istft(full, hop_length=hop_length, window=window)
rebuilt = librosa.stft(inverse, n_fft=n_fft, hop_length=hop_length, window=window)
angles = np.exp(1j * np.angle(rebuilt))
if verbose:
diff = np.abs(spectrogram) - np.abs(rebuilt)
t.set_postfix(loss=np.linalg.norm(diff, 'fro'))
full = np.abs(spectrogram).astype(np.complex) * angles
inverse = librosa.istft(full, hop_length=hop_length, window=window)
return inverse
示例6: inv_linear_spectrogram
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import istft [as 別名]
def inv_linear_spectrogram(linear_spectrogram, hparams):
'''Converts linear spectrogram to waveform using librosa'''
if hparams.signal_normalization:
D = _denormalize(linear_spectrogram, hparams)
else:
D = linear_spectrogram
S = _db_to_amp(D + hparams.ref_level_db) #Convert back to linear
if hparams.use_lws:
processor = _lws_processor(hparams)
D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
y = processor.istft(D).astype(np.float32)
return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
else:
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
示例7: inv_mel_spectrogram
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import istft [as 別名]
def inv_mel_spectrogram(mel_spectrogram, hparams):
'''Converts mel spectrogram to waveform using librosa'''
if hparams.signal_normalization:
D = _denormalize(mel_spectrogram, hparams)
else:
D = mel_spectrogram
S = _mel_to_linear(_db_to_amp(D + hparams.ref_level_db), hparams) # Convert back to linear
if hparams.use_lws:
processor = _lws_processor(hparams)
D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
y = processor.istft(D).astype(np.float32)
return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
else:
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
示例8: inv_linear_spectrogram
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import istft [as 別名]
def inv_linear_spectrogram(linear_spectrogram, hparams):
'''Converts linear spectrogram to waveform using librosa'''
if hparams.signal_normalization:
D = _denormalize(linear_spectrogram, hparams)
else:
D = linear_spectrogram
S = _db_to_amp(D + hparams.ref_level_db) #Convert back to linear
if hparams.use_lws:
processor = _lws_processor(hparams)
D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
y = processor.istft(D).astype(np.float32)
return inv_preemphasis(y, hparams.preemphasis)
else:
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis)
示例9: inv_mel_spectrogram
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import istft [as 別名]
def inv_mel_spectrogram(mel_spectrogram, hparams):
'''Converts mel spectrogram to waveform using librosa'''
if hparams.signal_normalization:
D = _denormalize(mel_spectrogram, hparams)
else:
D = mel_spectrogram
S = _mel_to_linear(_db_to_amp(D + hparams.ref_level_db), hparams) # Convert back to linear
if hparams.use_lws:
processor = _lws_processor(hparams)
D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
y = processor.istft(D).astype(np.float32)
return inv_preemphasis(y, hparams.preemphasis)
else:
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis)
示例10: image_to_sound
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import istft [as 別名]
def image_to_sound(self, image):
if self.mode == 'reallog' or self.mode == 'abslog':
x = np.zeros((image.shape[0] + 1, image.shape[1])) # real spectrograms have 2**i + 1 freq bins
# x.fill(image.mean())
x[:image.shape[0], :image.shape[1]] = image
if self.mode == 'reallog':
signed = adjust_dynamic_range(x, self.drange, (-1, 1))
sgn = np.sign(signed)
real_pt_stft = (np.exp(np.abs(signed)) - 1) * sgn
signal = lbr.istft(real_pt_stft, self.hop_length)
else:
x = adjust_dynamic_range(x, self.drange, (0, 255))
signal = self.reconstruct_from_magnitude(x)
elif self.mode == 'raw':
signal = image.ravel()
else:
raise Exception(
'image_to_sound: unrecognized mode: {}. Available modes are: reallog, abslog, raw.'.format(self.mode)
)
signal = signal / np.abs(signal).max()
return signal
示例11: griffinlim
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import istft [as 別名]
def griffinlim(spectrogram, n_iter=100, window='hann', n_fft=2048, hop_length=None, verbose=False):
if hop_length is None:
hop_length = n_fft // 4
angles = np.exp(2j * np.pi * np.random.rand(*spectrogram.shape))
t = tqdm(range(n_iter), ncols=100, mininterval=2.0, disable=not verbose)
for _ in t:
full = np.abs(spectrogram).astype(np.complex) * angles
inverse = librosa.istft(full, hop_length=hop_length, window=window)
rebuilt = librosa.stft(inverse, n_fft=n_fft, hop_length=hop_length, window=window)
angles = np.exp(1j * np.angle(rebuilt))
if verbose:
diff = np.abs(spectrogram) - np.abs(rebuilt)
t.set_postfix(loss=np.linalg.norm(diff, 'fro'))
full = np.abs(spectrogram).astype(np.complex) * angles
inverse = librosa.istft(full, hop_length=hop_length, window=window)
return inverse
示例12: griffin_lim
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import istft [as 別名]
def griffin_lim(magnitudes, n_iters=50, n_fft=1024):
"""
Griffin-Lim algorithm to convert magnitude spectrograms to audio signals
"""
phase = np.exp(2j * np.pi * np.random.rand(*magnitudes.shape))
complex_spec = magnitudes * phase
signal = librosa.istft(complex_spec)
if not np.isfinite(signal).all():
print("WARNING: audio was not finite, skipping audio saving")
return np.array([0])
for _ in range(n_iters):
_, phase = librosa.magphase(librosa.stft(signal, n_fft=n_fft))
complex_spec = magnitudes * phase
signal = librosa.istft(complex_spec)
return signal
示例13: spectrogramToAudioFile
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import istft [as 別名]
def spectrogramToAudioFile(magnitude, fftWindowSize, hopSize, phaseIterations=10, phase=None, length=None):
'''
Computes an audio signal from the given magnitude spectrogram, and optionally an initial phase.
Griffin-Lim is executed to recover/refine the given the phase from the magnitude spectrogram.
:param magnitude: Magnitudes to be converted to audio
:param fftWindowSize: Size of FFT window used to create magnitudes
:param hopSize: Hop size in frames used to create magnitudes
:param phaseIterations: Number of Griffin-Lim iterations to recover phase
:param phase: If given, starts ISTFT with this particular phase matrix
:param length: If given, audio signal is clipped/padded to this number of frames
:return:
'''
if phase is not None:
if phaseIterations > 0:
# Refine audio given initial phase with a number of iterations
return reconPhase(magnitude, fftWindowSize, hopSize, phaseIterations, phase, length)
# reconstructing the new complex matrix
stftMatrix = magnitude * np.exp(phase * 1j) # magnitude * e^(j*phase)
audio = librosa.istft(stftMatrix, hop_length=hopSize, length=length)
else:
audio = reconPhase(magnitude, fftWindowSize, hopSize, phaseIterations)
return audio
示例14: invert_spectrogram
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import istft [as 別名]
def invert_spectrogram(spectrogram):
'''Applies inverse fft.
Args:
spectrogram: [1+n_fft//2, t]
'''
return librosa.istft(spectrogram, hp.hop_length, win_length=hp.win_length, window="hann")
示例15: _istft
# 需要導入模塊: import librosa [as 別名]
# 或者: from librosa import istft [as 別名]
def _istft(y):
return librosa.istft(y, hop_length=get_hop_size())
# Conversions: