當前位置: 首頁>>代碼示例>>Python>>正文


Python lfw.evaluate方法代碼示例

本文整理匯總了Python中lfw.evaluate方法的典型用法代碼示例。如果您正苦於以下問題:Python lfw.evaluate方法的具體用法?Python lfw.evaluate怎麽用?Python lfw.evaluate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lfw的用法示例。


在下文中一共展示了lfw.evaluate方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: validate_on_lfw

# 需要導入模塊: import lfw [as 別名]
# 或者: from lfw import evaluate [as 別名]
def validate_on_lfw(model, lfw_160_path):
    # Read the file containing the pairs used for testing
    pairs = lfw.read_pairs('validation-LFW-pairs.txt')
    # Get the paths for the corresponding images
    paths, actual_issame = lfw.get_paths(lfw_160_path, pairs)
    num_pairs = len(actual_issame)

    all_embeddings = np.zeros((num_pairs * 2, 512), dtype='float32')
    for k in tqdm.trange(num_pairs):
        img1 = cv2.imread(paths[k * 2], cv2.IMREAD_COLOR)[:, :, ::-1]
        img2 = cv2.imread(paths[k * 2 + 1], cv2.IMREAD_COLOR)[:, :, ::-1]
        batch = np.stack([img1, img2], axis=0)
        embeddings = model.eval_embeddings(batch)
        all_embeddings[k * 2: k * 2 + 2, :] = embeddings

    tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(
        all_embeddings, actual_issame, distance_metric=1, subtract_mean=True)

    print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))

    auc = metrics.auc(fpr, tpr)
    print('Area Under Curve (AUC): %1.3f' % auc)
    eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
    print('Equal Error Rate (EER): %1.3f' % eer) 
開發者ID:ppwwyyxx,項目名稱:Adversarial-Face-Attack,代碼行數:27,代碼來源:face_attack.py

示例2: evaluate

# 需要導入模塊: import lfw [as 別名]
# 或者: from lfw import evaluate [as 別名]
def evaluate(sess, image_paths, embeddings, labels_batch, image_paths_placeholder, labels_placeholder, 
        batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, actual_issame, batch_size, 
        nrof_folds, log_dir, step, summary_writer, embedding_size):
    start_time = time.time()
    # Run forward pass to calculate embeddings
    print('Running forward pass on LFW images: ', end='')
    
    nrof_images = len(actual_issame)*2
    assert(len(image_paths)==nrof_images)
    labels_array = np.reshape(np.arange(nrof_images),(-1,3))
    image_paths_array = np.reshape(np.expand_dims(np.array(image_paths),1), (-1,3))
    sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array})
    emb_array = np.zeros((nrof_images, embedding_size))
    nrof_batches = int(np.ceil(nrof_images / batch_size))
    label_check_array = np.zeros((nrof_images,))
    for i in xrange(nrof_batches):
        batch_size = min(nrof_images-i*batch_size, batch_size)
        emb, lab = sess.run([embeddings, labels_batch], feed_dict={batch_size_placeholder: batch_size,
            learning_rate_placeholder: 0.0, phase_train_placeholder: False})
        emb_array[lab,:] = emb
        label_check_array[lab] = 1
    print('%.3f' % (time.time()-start_time))
    
    assert(np.all(label_check_array==1))
    
    _, _, accuracy, val, val_std, far = lfw.evaluate(emb_array, actual_issame, nrof_folds=nrof_folds)
    
    print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
    lfw_time = time.time() - start_time
    # Add validation loss and accuracy to summary
    summary = tf.Summary()
    #pylint: disable=maybe-no-member
    summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy))
    summary.value.add(tag='lfw/val_rate', simple_value=val)
    summary.value.add(tag='time/lfw', simple_value=lfw_time)
    summary_writer.add_summary(summary, step)
    with open(os.path.join(log_dir,'lfw_result.txt'),'at') as f:
        f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val)) 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:41,代碼來源:train_tripletloss.py

示例3: main

# 需要導入模塊: import lfw [as 別名]
# 或者: from lfw import evaluate [as 別名]
def main(args):
  
    with tf.Graph().as_default():
      
        with tf.Session() as sess:
            
            # Read the file containing the pairs used for testing
            pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))

            # Get the paths for the corresponding images
            paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs)
            
            image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths')
            labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels')
            batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
            control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control')
            phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
 
            nrof_preprocess_threads = 4
            image_size = (args.image_size, args.image_size)
            eval_input_queue = data_flow_ops.FIFOQueue(capacity=2000000,
                                        dtypes=[tf.string, tf.int32, tf.int32],
                                        shapes=[(1,), (1,), (1,)],
                                        shared_name=None, name=None)
            eval_enqueue_op = eval_input_queue.enqueue_many([image_paths_placeholder, labels_placeholder, control_placeholder], name='eval_enqueue_op')
            image_batch, label_batch = facenet.create_input_pipeline(eval_input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder)
     
            # Load the model
            input_map = {'image_batch': image_batch, 'label_batch': label_batch, 'phase_train': phase_train_placeholder}
            facenet.load_model(args.model, input_map=input_map)

            # Get output tensor
            embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
#              
            coord = tf.train.Coordinator()
            tf.train.start_queue_runners(coord=coord, sess=sess)

            evaluate(sess, eval_enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder,
                embeddings, label_batch, paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, args.distance_metric, args.subtract_mean,
                args.use_flipped_images, args.use_fixed_image_standardization) 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:42,代碼來源:validate_on_lfw.py

示例4: evaluate

# 需要導入模塊: import lfw [as 別名]
# 或者: from lfw import evaluate [as 別名]
def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, 
        embeddings, labels, image_paths, actual_issame, batch_size, nrof_folds, log_dir, step, summary_writer, stat, epoch, distance_metric, subtract_mean, use_flipped_images, use_fixed_image_standardization):
    start_time = time.time()
    # Run forward pass to calculate embeddings
    print('Runnning forward pass on LFW images')
    
    # Enqueue one epoch of image paths and labels
    nrof_embeddings = len(actual_issame)*2  # nrof_pairs * nrof_images_per_pair
    nrof_flips = 2 if use_flipped_images else 1
    nrof_images = nrof_embeddings * nrof_flips
    labels_array = np.expand_dims(np.arange(0,nrof_images),1)
    image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
    control_array = np.zeros_like(labels_array, np.int32)
    if use_fixed_image_standardization:
        control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
    if use_flipped_images:
        # Flip every second image
        control_array += (labels_array % 2)*facenet.FLIP
    sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array})
    
    embedding_size = int(embeddings.get_shape()[1])
    assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images,))
    for i in range(nrof_batches):
        feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
        emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab, :] = emb
        if i % 10 == 9:
            print('.', end='')
            sys.stdout.flush()
    print('')
    embeddings = np.zeros((nrof_embeddings, embedding_size*nrof_flips))
    if use_flipped_images:
        # Concatenate embeddings for flipped and non flipped version of the images
        embeddings[:,:embedding_size] = emb_array[0::2,:]
        embeddings[:,embedding_size:] = emb_array[1::2,:]
    else:
        embeddings = emb_array

    assert np.array_equal(lab_array, np.arange(nrof_images))==True, 'Wrong labels used for evaluation, possibly caused by training examples left in the input pipeline'
    _, _, accuracy, val, val_std, far = lfw.evaluate(embeddings, actual_issame, nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean)
    
    print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
    lfw_time = time.time() - start_time
    # Add validation loss and accuracy to summary
    summary = tf.Summary()
    #pylint: disable=maybe-no-member
    summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy))
    summary.value.add(tag='lfw/val_rate', simple_value=val)
    summary.value.add(tag='time/lfw', simple_value=lfw_time)
    summary_writer.add_summary(summary, step)
    with open(os.path.join(log_dir,'lfw_result.txt'),'at') as f:
        f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val))
    stat['lfw_accuracy'][epoch-1] = np.mean(accuracy)
    stat['lfw_valrate'][epoch-1] = val 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:61,代碼來源:train_softmax.py

示例5: evaluate

# 需要導入模塊: import lfw [as 別名]
# 或者: from lfw import evaluate [as 別名]
def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder,
        embeddings, labels, image_paths, actual_issame, batch_size, nrof_folds, distance_metric, subtract_mean, use_flipped_images, use_fixed_image_standardization):
    # Run forward pass to calculate embeddings
    print('Runnning forward pass on LFW images')
    
    # Enqueue one epoch of image paths and labels
    nrof_embeddings = len(actual_issame)*2  # nrof_pairs * nrof_images_per_pair
    nrof_flips = 2 if use_flipped_images else 1
    nrof_images = nrof_embeddings * nrof_flips
    labels_array = np.expand_dims(np.arange(0,nrof_images),1)
    image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
    control_array = np.zeros_like(labels_array, np.int32)
    if use_fixed_image_standardization:
        control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
    if use_flipped_images:
        # Flip every second image
        control_array += (labels_array % 2)*facenet.FLIP
    sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array})
    
    embedding_size = int(embeddings.get_shape()[1])
    assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images,))
    for i in range(nrof_batches):
        feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
        emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab, :] = emb
        if i % 10 == 9:
            print('.', end='')
            sys.stdout.flush()
        #import pdb; pdb.set_trace()
    print('')
    
    embeddings = np.zeros((nrof_embeddings, embedding_size*nrof_flips))
    if use_flipped_images:
        # Concatenate embeddings for flipped and non flipped version of the images
        embeddings[:,:embedding_size] = emb_array[0::2,:]
        embeddings[:,embedding_size:] = emb_array[1::2,:]
    else:
        embeddings = emb_array

    assert np.array_equal(lab_array, np.arange(nrof_images))==True, 'Wrong labels used for evaluation, possibly caused by training examples left in the input pipeline'
    tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(embeddings, actual_issame, nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean)
    
    print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
    
    auc = metrics.auc(fpr, tpr)
    print('Area Under Curve (AUC): %1.3f' % auc)
    eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
    print('Equal Error Rate (EER): %1.3f' % eer) 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:55,代碼來源:validate_on_lfw.py

示例6: evaluate

# 需要導入模塊: import lfw [as 別名]
# 或者: from lfw import evaluate [as 別名]
def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder,
        embeddings, labels, image_paths, actual_issame, batch_size, nrof_folds, distance_metric, subtract_mean, use_flipped_images, use_fixed_image_standardization):
    # Run forward pass to calculate embeddings
    print('Runnning forward pass on LFW images')
    
    # Enqueue one epoch of image paths and labels
    nrof_embeddings = len(actual_issame)*2  # nrof_pairs * nrof_images_per_pair
    nrof_flips = 2 if use_flipped_images else 1
    nrof_images = nrof_embeddings * nrof_flips
    labels_array = np.expand_dims(np.arange(0,nrof_images),1)
    image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)
    control_array = np.zeros_like(labels_array, np.int32)
    if use_fixed_image_standardization:
        control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
    if use_flipped_images:
        # Flip every second image
        control_array += (labels_array % 2)*facenet.FLIP
    sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array})
    
    embedding_size = int(embeddings.get_shape()[1])
    assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images,))
    for i in range(nrof_batches):
        feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size}
        emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab, :] = emb
        if i % 10 == 9:
            print('.', end='')
            sys.stdout.flush()
    print('')
    embeddings = np.zeros((nrof_embeddings, embedding_size*nrof_flips))
    if use_flipped_images:
        # Concatenate embeddings for flipped and non flipped version of the images
        embeddings[:,:embedding_size] = emb_array[0::2,:]
        embeddings[:,embedding_size:] = emb_array[1::2,:]
    else:
        embeddings = emb_array

    assert np.array_equal(lab_array, np.arange(nrof_images))==True, 'Wrong labels used for evaluation, possibly caused by training examples left in the input pipeline'
    tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(embeddings, actual_issame, nrof_folds=nrof_folds, distance_metric=distance_metric, subtract_mean=subtract_mean)
    
    print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
    
    auc = metrics.auc(fpr, tpr)
    print('Area Under Curve (AUC): %1.3f' % auc)
    eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
    print('Equal Error Rate (EER): %1.3f' % eer) 
開發者ID:cjekel,項目名稱:tindetheus,代碼行數:53,代碼來源:validate_on_lfw.py

示例7: test

# 需要導入模塊: import lfw [as 別名]
# 或者: from lfw import evaluate [as 別名]
def test(args):
    with tf.Graph().as_default():
        with tf.Session() as sess:
            #saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)
            saver = tf.train.Saver(tf.global_variables())
            saver.restore(sess, args.model)
            # Read the file containing the pairs used for testing
            pairs = lfw.read_pairs(os.path.expanduser(args.test_list_dir))
            # Get the paths for the corresponding images
            paths, actual_issame = lfw.get_paths(os.path.expanduser(args.test_data_dir), pairs, args.test_list_dir)
            image_size = args.image_size
            print('image size',image_size)
            images_placeholder = tf.placeholder(tf.float32,shape=(None,args.image_height,args.image_width,args.image_width),name='image')
            phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
            #network definition.
            prelogits1 = network.infer(images_placeholder,args.embedding_size)
            if args.fc_bn:
                print('do batch norm after network')
                prelogits = slim.batch_norm(prelogits1, is_training=phase_train_placeholder,epsilon=1e-5, scale=True,scope='softmax_bn')
            #embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')
            embeddings = tf.identity(prelogits)
            embedding_size = embeddings.get_shape()[1]
            # Run forward pass to calculate embeddings
            print('Runnning forward pass on testing images')
            batch_size = args.test_batch_size
            nrof_images = len(paths)
            nrof_batches = int(math.ceil(1.0*nrof_images / batch_size))
            emb_array = np.zeros((nrof_images, embedding_size))

            for i in range(nrof_batches):
                start_index = i*batch_size
                print('handing {}/{}'.format(start_index,nrof_images))
                end_index = min((i+1)*batch_size, nrof_images)
                paths_batch = paths[start_index:end_index]
                images = utils.load_data(paths_batch, False, False, args.image_height,args.image_width,False,\
                    (args.image_height,args.image_width))
                feed_dict = { images_placeholder:images, phase_train_placeholder:False }
                feats,a = sess.run([embeddings,prelogits], feed_dict=feed_dict)
                # do not know for sure whether we should turn this on? it depends.
                feats = utils.l2_normalize(feats)
                emb_array[start_index:end_index,:] = feats
        
            tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(emb_array, 
                actual_issame, 0.001, nrof_folds=args.test_nrof_folds)
            print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy)))
            print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
            auc = metrics.auc(fpr, tpr)
            print('Area Under Curve (AUC): %1.3f' % auc) #
            eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)#fill_value="extrapolate"
            print('Equal Error Rate (EER): %1.3f' % eer)


            tpr1, fpr1, accuracy1, val1, val_std1, far1 = lfw.evaluate(emb_array, 
                actual_issame, 0.0001, nrof_folds=args.test_nrof_folds)
            print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy1), np.std(accuracy1)))
            print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val1, val_std1, far1))
            auc = metrics.auc(fpr1, tpr1)
            print('Area Under Curve (AUC): %1.3f' % auc) #
            eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr1, tpr1)(x), 0., 1.)#fill_value="extrapolate"
            print('Equal Error Rate (EER): %1.3f' % eer) 
開發者ID:xulabs,項目名稱:aitom,代碼行數:62,代碼來源:test.py


注:本文中的lfw.evaluate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。