當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.conv2d方法代碼示例

本文整理匯總了Python中layers.conv2d方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.conv2d方法的具體用法?Python layers.conv2d怎麽用?Python layers.conv2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在layers的用法示例。


在下文中一共展示了layers.conv2d方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_LeNet

# 需要導入模塊: import layers [as 別名]
# 或者: from layers import conv2d [as 別名]
def get_LeNet(batch_size=batch_size, img_shape=(1, 28, 28), dtype="float32"):
    data_shape = (batch_size,) + img_shape
    data = relay.var("data", shape=data_shape, dtype=dtype)
    conv1_bias = relay.var("conv1_bias")
    conv1 = layers.conv2d(data, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), channels=6, name="conv1")
    conv1 = relay.nn.bias_add(conv1, conv1_bias)
    maxpool1 = relay.nn.max_pool2d(conv1, (2, 2), (2, 2))
    conv2_bias = relay.var("conv2_bias")
    conv2 = layers.conv2d(maxpool1, kernel_size=(5, 5), strides=(1, 1), padding=(0, 0), channels=16, name="conv2")
    conv2 = relay.nn.bias_add(conv2, conv2_bias)
    maxpool2 = relay.nn.max_pool2d(conv2, (2, 2), (2, 2))
    bf1 = relay.nn.batch_flatten(maxpool2)
    dense1 = layers.dense_without_bias(bf1, units=120, name="dense1")
    dense2 = layers.dense_without_bias(dense1, units=84, name="dense2")
    dense3 = layers.dense_without_bias(dense2, units=10, name="dense3")
    softmax = relay.nn.softmax(dense3)
    #label is from input
    label = relay.var("data2", shape=(batch_size, 10), dtype=dtype)
    loss = relay.nn.cross_entropy(softmax, label)
    args = relay.analysis.free_vars(loss)
    return relay.Function(args, loss) 
開發者ID:KnowingNothing,項目名稱:FlexTensor,代碼行數:23,代碼來源:relay-lenet.py

示例2: __init__

# 需要導入模塊: import layers [as 別名]
# 或者: from layers import conv2d [as 別名]
def __init__(self, sess, input_shape, num_actions, reuse=False, is_training=True, name='train'):
        super().__init__(sess, reuse)
        self.initial_state = []
        with tf.name_scope(name + "policy_input"):
            self.X_input = tf.placeholder(tf.uint8, input_shape)
        with tf.variable_scope("policy", reuse=reuse):
            conv1 = conv2d('conv1', tf.cast(self.X_input, tf.float32) / 255., num_filters=32, kernel_size=(8, 8),
                           padding='VALID', stride=(4, 4),
                           initializer=orthogonal_initializer(np.sqrt(2)), activation=tf.nn.relu,
                           is_training=is_training)

            conv2 = conv2d('conv2', conv1, num_filters=64, kernel_size=(4, 4), padding='VALID', stride=(2, 2),
                           initializer=orthogonal_initializer(np.sqrt(2)), activation=tf.nn.relu,
                           is_training=is_training)

            conv3 = conv2d('conv3', conv2, num_filters=64, kernel_size=(3, 3), padding='VALID', stride=(1, 1),
                           initializer=orthogonal_initializer(np.sqrt(2)), activation=tf.nn.relu,
                           is_training=is_training)

            conv3_flattened = flatten(conv3)

            fc4 = dense('fc4', conv3_flattened, output_dim=512, initializer=orthogonal_initializer(np.sqrt(2)),
                        activation=tf.nn.relu, is_training=is_training)

            self.policy_logits = dense('policy_logits', fc4, output_dim=num_actions,
                                       initializer=orthogonal_initializer(np.sqrt(1.0)), is_training=is_training)

            self.value_function = dense('value_function', fc4, output_dim=1,
                                        initializer=orthogonal_initializer(np.sqrt(1.0)), is_training=is_training)

            with tf.name_scope('value'):
                self.value_s = self.value_function[:, 0]

            with tf.name_scope('action'):
                self.action_s = noise_and_argmax(self.policy_logits) 
開發者ID:MG2033,項目名稱:A2C,代碼行數:37,代碼來源:cnn_policy.py

示例3: __build

# 需要導入模塊: import layers [as 別名]
# 或者: from layers import conv2d [as 別名]
def __build(self):
        self.__init_global_epoch()
        self.__init_global_step()
        self.__init_input()

        with tf.name_scope('Preprocessing'):
            red, green, blue = tf.split(self.X, num_or_size_splits=3, axis=3)
            preprocessed_input = tf.concat([
                tf.subtract(blue, ShuffleNet.MEAN[0]) * ShuffleNet.NORMALIZER,
                tf.subtract(green, ShuffleNet.MEAN[1]) * ShuffleNet.NORMALIZER,
                tf.subtract(red, ShuffleNet.MEAN[2]) * ShuffleNet.NORMALIZER,
            ], 3)
        x_padded = tf.pad(preprocessed_input, [[0, 0], [1, 1], [1, 1], [0, 0]], "CONSTANT")
        conv1 = conv2d('conv1', x=x_padded, w=None, num_filters=self.output_channels['conv1'], kernel_size=(3, 3),
                       stride=(2, 2), l2_strength=self.args.l2_strength, bias=self.args.bias,
                       batchnorm_enabled=self.args.batchnorm_enabled, is_training=self.is_training,
                       activation=tf.nn.relu, padding='VALID')
        padded = tf.pad(conv1, [[0, 0], [0, 1], [0, 1], [0, 0]], "CONSTANT")
        max_pool = max_pool_2d(padded, size=(3, 3), stride=(2, 2), name='max_pool')
        stage2 = self.__stage(max_pool, stage=2, repeat=3)
        stage3 = self.__stage(stage2, stage=3, repeat=7)
        stage4 = self.__stage(stage3, stage=4, repeat=3)
        global_pool = avg_pool_2d(stage4, size=(7, 7), stride=(1, 1), name='global_pool', padding='VALID')

        logits_unflattened = conv2d('fc', global_pool, w=None, num_filters=self.args.num_classes,
                                    kernel_size=(1, 1),
                                    l2_strength=self.args.l2_strength,
                                    bias=self.args.bias,
                                    is_training=self.is_training)
        self.logits = flatten(logits_unflattened)

        self.__init_output() 
開發者ID:MG2033,項目名稱:ShuffleNet,代碼行數:34,代碼來源:model.py

示例4: build

# 需要導入模塊: import layers [as 別名]
# 或者: from layers import conv2d [as 別名]
def build(self):
        
        self.net = {}
        self.net['input'] = tf.transpose(self.x, perm=(0, 2, 3, 1))
            
        if self.network_type == 'cnn':
            self.net['conv1'] = conv2d(self.net['input'], 32, kernel=(8, 8), stride=(4, 4), 
                                       init_b=tf.constant_initializer(0.01), name='conv1')
            self.net['conv2'] = conv2d(self.net['input'], 64, kernel=(4, 4), stride=(2, 2), 
                                       init_b=tf.constant_initializer(0.01), name='conv2')
            self.net['conv3'] = conv2d(self.net['input'], 64, kernel=(3, 3), stride=(1, 1), 
                                       init_b=tf.constant_initializer(0.01), name='conv3')
            self.net['feature'] = dense(self.net['conv2'], 512, 
                                        init_b=tf.constant_initializer(0.01), name='fc1')
        elif self.network_type == 'cnn_nips':
            self.net['conv1'] = conv2d(self.net['input'], 16, kernel=(8, 8), stride=(4, 4), 
                                       init_b=tf.constant_initializer(0.01), name='conv1')
            self.net['conv2'] = conv2d(self.net['conv1'], 32, kernel=(4, 4), stride=(2, 2), 
                                       init_b=tf.constant_initializer(0.01), name='conv2')
            self.net['feature'] = dense(self.net['conv2'], 256, 
                                        init_b=tf.constant_initializer(0.01), name='fc1')
        elif self.network_type == 'mlp':
            self.net['fc1'] = dense(self.net['input'], 50, 
                                    init_b=tf.constant_initializer(0.0), name='fc1')
            self.net['feature'] = dense(self.net['fc1'], 50, 
                                        init_b=tf.constant_initializer(0.0), name='fc2')
        else:
            raise NotImplementedError('Unknown network type: {}'.format(self.network_type))
            
        self.net['values'] = dense(self.net['feature'], self.n_outputs, activation=None,
                                   init_b=tf.constant_initializer(0.0), name='values')
        
        self.net['q_value'] = tf.reduce_max(self.net['values'], axis=1, name='q_value')
        self.net['q_action'] = tf.argmax(self.net['values'], axis=1, 
                                         name='q_action', output_type=tf.int32)
        
        self.vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 
                                      tf.get_variable_scope().name) 
開發者ID:PacktPublishing,項目名稱:Python-Reinforcement-Learning-Projects,代碼行數:40,代碼來源:q_network.py

示例5: __call__

# 需要導入模塊: import layers [as 別名]
# 或者: from layers import conv2d [as 別名]
def __call__(self, x, reuse=False, output_name=None):
        with tf.variable_scope(self.name) as scope:

            if reuse:
                scope.reuse_variables()

            # Initial dense multiplication
            x = layers.linear(x, "G_FC1", self.nb_filters * 8 * 8)

            batch_size = tf.shape(x)[0]
            if FLAGS.data_format == "NHWC":
                target_shape = (batch_size, 8, 8, self.nb_filters)
            elif FLAGS.data_format == "NCHW":
                target_shape = (batch_size, self.nb_filters, 8, 8)

            x = layers.reshape(x, target_shape)
            # x = tf.contrib.layers.batch_norm(x, fused=True, data_format=FLAGS.data_format)
            x = tf.nn.elu(x)

            x = layers.dec_conv2d_block(x, "G_conv2D1", self.nb_filters, 3, data_format=FLAGS.data_format)
            x = layers.upsampleNN(x, "G_up1", 2, data_format=FLAGS.data_format)

            x = layers.dec_conv2d_block(x, "G_conv2D2", self.nb_filters, 3, data_format=FLAGS.data_format)
            x = layers.upsampleNN(x, "G_up2", 2, data_format=FLAGS.data_format)

            x = layers.dec_conv2d_block(x, "G_conv2D3", self.nb_filters, 3, data_format=FLAGS.data_format)
            x = layers.upsampleNN(x, "G_up3", 2, data_format=FLAGS.data_format)

            x = layers.dec_conv2d_block(x, "G_conv2D4", self.nb_filters, 3, data_format=FLAGS.data_format)

            # Last conv
            x = layers.conv2d(x, "G_conv2D5", self.nb_filters, FLAGS.channels, 3, 1, "SAME", data_format=FLAGS.data_format)

            x = tf.nn.tanh(x, name=output_name)

            return x 
開發者ID:tdeboissiere,項目名稱:DeepLearningImplementations,代碼行數:38,代碼來源:models.py

示例6: _build_encoder

# 需要導入模塊: import layers [as 別名]
# 或者: from layers import conv2d [as 別名]
def _build_encoder(self):
        with tf.variable_scope(self.name):
            if self.arch == 'FC':
                layer_i = layers.flatten(self.input_ph)
                for i, layer_size in enumerate(self.fc_layer_sizes):
                    layer_i = layers.fc('fc{}'.format(i+1), layer_i, layer_size, activation=self.activation)[-1]
                self.ox = layer_i
            elif self.arch == 'ATARI-TRPO':
                self.w1, self.b1, self.o1 = layers.conv2d('conv1', self.input_ph, 16, 4, self.input_channels, 2, activation=self.activation)
                self.w2, self.b2, self.o2 = layers.conv2d('conv2', self.o1, 16, 4, 16, 2, activation=self.activation)
                self.w3, self.b3, self.o3 = layers.fc('fc3', layers.flatten(self.o2), 20, activation=self.activation)
                self.ox = self.o3
            elif self.arch == 'NIPS':
                self.w1, self.b1, self.o1 = layers.conv2d('conv1', self.input_ph, 16, 8, self.input_channels, 4, activation=self.activation)
                self.w2, self.b2, self.o2 = layers.conv2d('conv2', self.o1, 32, 4, 16, 2, activation=self.activation)
                self.w3, self.b3, self.o3 = layers.fc('fc3', layers.flatten(self.o2), 256, activation=self.activation)
                self.ox = self.o3
            elif self.arch == 'NATURE':
                self.w1, self.b1, self.o1 = layers.conv2d('conv1', self.input_ph, 32, 8, self.input_channels, 4, activation=self.activation)
                self.w2, self.b2, self.o2 = layers.conv2d('conv2', self.o1, 64, 4, 32, 2, activation=self.activation)
                self.w3, self.b3, self.o3 = layers.conv2d('conv3', self.o2, 64, 3, 64, 1, activation=self.activation)
                self.w4, self.b4, self.o4 = layers.fc('fc4', layers.flatten(self.o3), 512, activation=self.activation)
                self.ox = self.o4
            else:
                raise Exception('Invalid architecture `{}`'.format(self.arch))

            if self.use_recurrent:
                with tf.variable_scope('lstm_layer') as vs:
                    self.lstm_cell = tf.contrib.rnn.BasicLSTMCell(
                        self.hidden_state_size, state_is_tuple=True, forget_bias=1.0)
                    
                    batch_size = tf.shape(self.step_size)[0]
                    self.ox_reshaped = tf.reshape(self.ox,
                        [batch_size, -1, self.ox.get_shape().as_list()[-1]])
                    state_tuple = tf.contrib.rnn.LSTMStateTuple(
                        *tf.split(self.initial_lstm_state, 2, 1))

                    self.lstm_outputs, self.lstm_state = tf.nn.dynamic_rnn(
                        self.lstm_cell,
                        self.ox_reshaped,
                        initial_state=state_tuple,
                        sequence_length=self.step_size,
                        time_major=False)

                    self.lstm_state = tf.concat(self.lstm_state, 1)
                    self.ox = tf.reshape(self.lstm_outputs, [-1,self.hidden_state_size], name='reshaped_lstm_outputs')

                    # Get all LSTM trainable params
                    self.lstm_trainable_variables = [v for v in 
                        tf.trainable_variables() if v.name.startswith(vs.name)]

            return self.ox 
開發者ID:steveKapturowski,項目名稱:tensorflow-rl,代碼行數:54,代碼來源:network.py


注:本文中的layers.conv2d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。