本文整理匯總了Python中layers.conv方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.conv方法的具體用法?Python layers.conv怎麽用?Python layers.conv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類layers
的用法示例。
在下文中一共展示了layers.conv方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_scope_and_reuse_conv
# 需要導入模塊: import layers [as 別名]
# 或者: from layers import conv [as 別名]
def get_scope_and_reuse_conv(network_id):
"""Return the network scope name of conv part given network id.
We use the ae as name only to make it consistent with pix2pix
structure but it is not an auto-encoder. For network 1 or
network 2, the weight is not shared. network 3 shares with network 1
and network 4 shares with network 2.
"""
if network_id == 1 or network_id == 2:
scope = 'ae{}'.format(network_id)
reuse = False
elif network_id == 3:
scope = 'ae1'
reuse = True
elif network_id == 4:
scope = 'ae2'
reuse = True
return scope, reuse
示例2: logit
# 需要導入模塊: import layers [as 別名]
# 或者: from layers import conv [as 別名]
def logit(x, is_training=True, update_batch_stats=True, stochastic=True, seed=1234):
h = x
rng = numpy.random.RandomState(seed)
h = L.conv(h, ksize=3, stride=1, f_in=3, f_out=128, seed=rng.randint(123456), name='c1')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b1'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=128, seed=rng.randint(123456), name='c2')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b2'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=128, seed=rng.randint(123456), name='c3')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b3'), FLAGS.lrelu_a)
h = L.max_pool(h, ksize=2, stride=2)
h = tf.nn.dropout(h, keep_prob=FLAGS.keep_prob_hidden, seed=rng.randint(123456)) if stochastic else h
h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=256, seed=rng.randint(123456), name='c4')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b4'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=256, seed=rng.randint(123456), name='c5')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b5'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=256, seed=rng.randint(123456), name='c6')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b6'), FLAGS.lrelu_a)
h = L.max_pool(h, ksize=2, stride=2)
h = tf.nn.dropout(h, keep_prob=FLAGS.keep_prob_hidden, seed=rng.randint(123456)) if stochastic else h
h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=512, seed=rng.randint(123456), padding="VALID", name='c7')
h = L.lrelu(L.bn(h, 512, is_training=is_training, update_batch_stats=update_batch_stats, name='b7'), FLAGS.lrelu_a)
h = L.conv(h, ksize=1, stride=1, f_in=512, f_out=256, seed=rng.randint(123456), name='c8')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b8'), FLAGS.lrelu_a)
h = L.conv(h, ksize=1, stride=1, f_in=256, f_out=128, seed=rng.randint(123456), name='c9')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b9'), FLAGS.lrelu_a)
h = tf.reduce_mean(h, reduction_indices=[1, 2]) # Global average pooling
h = L.fc(h, 128, 10, seed=rng.randint(123456), name='fc')
if FLAGS.top_bn:
h = L.bn(h, 10, is_training=is_training,
update_batch_stats=update_batch_stats, name='bfc')
return h
示例3: _fuse
# 需要導入模塊: import layers [as 別名]
# 或者: from layers import conv [as 別名]
def _fuse(self):
with tf.variable_scope("Context_to_Query_Attention_Layer"):
C = tf.tile(tf.expand_dims(self.c_embed_encoding,2),[1,1,self.max_q_len,1])
Q = tf.tile(tf.expand_dims(self.q_embed_encoding,1),[1,self.max_p_len,1,1])
S = trilinear([C, Q, C*Q], input_keep_prob = 1.0 - self.dropout)
mask_q = tf.expand_dims(self.q_mask, 1)
S_ = tf.nn.softmax(mask_logits(S, mask = mask_q))
mask_c = tf.expand_dims(self.c_mask, 2)
S_T = tf.transpose(tf.nn.softmax(mask_logits(S, mask = mask_c), dim = 1),(0,2,1))
self.c2q = tf.matmul(S_, self.q_embed_encoding)
self.q2c = tf.matmul(tf.matmul(S_, S_T), self.c_embed_encoding)
self.attention_outputs = [self.c_embed_encoding, self.c2q, self.c_embed_encoding * self.c2q, self.c_embed_encoding * self.q2c]
N, PL, QL, CL, d, dc, nh = self._params()
if self.config.fix_pretrained_vector:
dc = self.char_mat.get_shape()[-1]
with tf.variable_scope("Model_Encoder_Layer"):
inputs = tf.concat(self.attention_outputs, axis = -1)
self.enc = [conv(inputs, d, name = "input_projection")]
for i in range(3):
if i % 2 == 0:
self.enc[i] = tf.nn.dropout(self.enc[i], 1.0 - self.dropout)
self.enc.append(
residual_block(self.enc[i],
num_blocks = 1,
num_conv_layers = 2,
kernel_size = 5,
mask = self.c_mask,
num_filters = d,
num_heads = nh,
seq_len = self.c_len,
scope = "Model_Encoder",
bias = False,
reuse = True if i > 0 else None,
dropout = self.dropout)
)
for i, item in enumerate(self.enc):
self.enc[i] = tf.reshape(self.enc[i],
[N, -1, self.enc[i].get_shape()[-1]])
示例4: _decode
# 需要導入模塊: import layers [as 別名]
# 或者: from layers import conv [as 別名]
def _decode(self):
N, PL, QL, CL, d, dc, nh = self._params()
if self.config.use_position_attn:
start_logits = tf.squeeze(
conv(self._attention(tf.concat([self.enc[1], self.enc[2]], axis = -1), name="attn1"), 1, bias = False, name = "start_pointer"), -1)
end_logits = tf.squeeze(
conv(self._attention(tf.concat([self.enc[1], self.enc[3]], axis = -1), name="attn2"), 1, bias = False, name = "end_pointer"), -1)
else:
start_logits = tf.squeeze(
conv(tf.concat([self.enc[1], self.enc[2]], axis = -1), 1, bias = False, name = "start_pointer"), -1)
end_logits = tf.squeeze(
conv(tf.concat([self.enc[1], self.enc[3]], axis = -1), 1, bias = False, name = "end_pointer"), -1)
self.logits = [mask_logits(start_logits, mask = tf.reshape(self.c_mask, [N, -1])),
mask_logits(end_logits, mask = tf.reshape(self.c_mask, [N, -1]))]
self.logits1, self.logits2 = [l for l in self.logits]
outer = tf.matmul(tf.expand_dims(tf.nn.softmax(self.logits1), axis=2),
tf.expand_dims(tf.nn.softmax(self.logits2), axis=1))
outer = tf.matrix_band_part(outer, 0, self.max_a_len)
self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
示例5: logit
# 需要導入模塊: import layers [as 別名]
# 或者: from layers import conv [as 別名]
def logit(x, is_training=True, update_batch_stats=True, stochastic=True, seed=1234):
h = x
rng = numpy.random.RandomState(seed)
h = L.conv(h, ksize=3, stride=1, f_in=3, f_out=128, seed=rng.randint(123456), name='c1')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b1'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=128, seed=rng.randint(123456), name='c2')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b2'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=128, seed=rng.randint(123456), name='c3')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b3'), FLAGS.lrelu_a)
h = L.max_pool(h, ksize=2, stride=2)
h = tf.nn.dropout(h, keep_prob=FLAGS.keep_prob_hidden, seed=rng.randint(123456)) if stochastic else h
h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=256, seed=rng.randint(123456), name='c4')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b4'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=256, seed=rng.randint(123456), name='c5')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b5'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=256, seed=rng.randint(123456), name='c6')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b6'), FLAGS.lrelu_a)
h = L.max_pool(h, ksize=2, stride=2)
h = tf.nn.dropout(h, keep_prob=FLAGS.keep_prob_hidden, seed=rng.randint(123456)) if stochastic else h
h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=512, seed=rng.randint(123456), padding="VALID", name='c7')
h = L.lrelu(L.bn(h, 512, is_training=is_training, update_batch_stats=update_batch_stats, name='b7'), FLAGS.lrelu_a)
h = L.conv(h, ksize=1, stride=1, f_in=512, f_out=256, seed=rng.randint(123456), name='c8')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b8'), FLAGS.lrelu_a)
h = L.conv(h, ksize=1, stride=1, f_in=256, f_out=128, seed=rng.randint(123456), name='c9')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b9'), FLAGS.lrelu_a)
h1 = tf.reduce_mean(h, reduction_indices=[1, 2]) # Features to be aligned
h = L.fc(h1, 128, 10, seed=rng.randint(123456), name='fc')
if FLAGS.top_bn:
h = L.bn(h, 10, is_training=is_training,
update_batch_stats=update_batch_stats, name='bfc')
return h, h1