當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.SoftmaxLoss方法代碼示例

本文整理匯總了Python中layers.SoftmaxLoss方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.SoftmaxLoss方法的具體用法?Python layers.SoftmaxLoss怎麽用?Python layers.SoftmaxLoss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在layers的用法示例。


在下文中一共展示了layers.SoftmaxLoss方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import layers [as 別名]
# 或者: from layers import SoftmaxLoss [as 別名]
def __init__(self, cl_logits_input_dim=None):
    self.global_step = tf.contrib.framework.get_or_create_global_step()
    self.vocab_freqs = _get_vocab_freqs()

    # Cache VatxtInput objects
    self.cl_inputs = None
    self.lm_inputs = None

    # Cache intermediate Tensors that are reused
    self.tensors = {}

    # Construct layers which are reused in constructing the LM and
    # Classification graphs. Instantiating them all once here ensures that
    # variable reuse works correctly.
    self.layers = {}
    self.layers['embedding'] = layers_lib.Embedding(
        FLAGS.vocab_size, FLAGS.embedding_dims, FLAGS.normalize_embeddings,
        self.vocab_freqs, FLAGS.keep_prob_emb)
    self.layers['lstm'] = layers_lib.LSTM(
        FLAGS.rnn_cell_size, FLAGS.rnn_num_layers, FLAGS.keep_prob_lstm_out)
    self.layers['lm_loss'] = layers_lib.SoftmaxLoss(
        FLAGS.vocab_size,
        FLAGS.num_candidate_samples,
        self.vocab_freqs,
        name='LM_loss')

    cl_logits_input_dim = cl_logits_input_dim or FLAGS.rnn_cell_size
    self.layers['cl_logits'] = layers_lib.cl_logits_subgraph(
        [FLAGS.cl_hidden_size] * FLAGS.cl_num_layers, cl_logits_input_dim,
        FLAGS.num_classes, FLAGS.keep_prob_cl_hidden) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:32,代碼來源:graphs.py

示例2: __init__

# 需要導入模塊: import layers [as 別名]
# 或者: from layers import SoftmaxLoss [as 別名]
def __init__(self, cl_logits_input_dim=None):
    self.global_step = tf.train.get_or_create_global_step()
    self.vocab_freqs = _get_vocab_freqs()

    # Cache VatxtInput objects
    self.cl_inputs = None
    self.lm_inputs = None

    # Cache intermediate Tensors that are reused
    self.tensors = {}

    # Construct layers which are reused in constructing the LM and
    # Classification graphs. Instantiating them all once here ensures that
    # variable reuse works correctly.
    self.layers = {}
    self.layers['embedding'] = layers_lib.Embedding(
        FLAGS.vocab_size, FLAGS.embedding_dims, FLAGS.normalize_embeddings,
        self.vocab_freqs, FLAGS.keep_prob_emb)
    self.layers['lstm'] = layers_lib.LSTM(
        FLAGS.rnn_cell_size, FLAGS.rnn_num_layers, FLAGS.keep_prob_lstm_out)
    self.layers['lm_loss'] = layers_lib.SoftmaxLoss(
        FLAGS.vocab_size,
        FLAGS.num_candidate_samples,
        self.vocab_freqs,
        name='LM_loss')

    cl_logits_input_dim = cl_logits_input_dim or FLAGS.rnn_cell_size
    self.layers['cl_logits'] = layers_lib.cl_logits_subgraph(
        [FLAGS.cl_hidden_size] * FLAGS.cl_num_layers, cl_logits_input_dim,
        FLAGS.num_classes, FLAGS.keep_prob_cl_hidden) 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:32,代碼來源:graphs.py


注:本文中的layers.SoftmaxLoss方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。