當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.floatX方法代碼示例

本文整理匯總了Python中lasagne.utils.floatX方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.floatX方法的具體用法?Python utils.floatX怎麽用?Python utils.floatX使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lasagne.utils的用法示例。


在下文中一共展示了utils.floatX方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_adaptivegaussian_layer

# 需要導入模塊: from lasagne import utils [as 別名]
# 或者: from lasagne.utils import floatX [as 別名]
def test_adaptivegaussian_layer(self, filter_size, init_std):
        input = floatX(np.ones((10, 1, 1000)))

        # test the case with one channel
        assert(input.shape[1] == 1)

        input_layer = self.input_layer(input.shape)
        input_theano = theano.shared(input)

        layer = self.adaptivegaussian_layer(input_layer, filter_size, init_std)
        layer_result = layer.get_output_for(input_theano).eval()

        # theano gaussian filter
        theano_gf = layer.W.eval()

        # numpy gaussian filter
        np_gf = self.make_numpy_gaussian_filter_v2(filter_size, init_std)

        numpy_result = self.convolve_numpy_array(input, np_gf)

        assert np.all(numpy_result.shape == layer.output_shape)
        assert np.all(numpy_result.shape == layer_result.shape)
        assert np.allclose(theano_gf[0, 0, :], np_gf[0, 0, :])
        assert np.allclose(numpy_result, layer_result) 
開發者ID:ciaua,項目名稱:clip2frame,代碼行數:26,代碼來源:test_gaussian_layers.py

示例2: test_fixedgaussian_layer

# 需要導入模塊: from lasagne import utils [as 別名]
# 或者: from lasagne.utils import floatX [as 別名]
def test_fixedgaussian_layer(self, filter_size, init_std):
        input = floatX(np.ones((10, 1, 1000)))

        # test the case with one channel
        assert(input.shape[1] == 1)

        input_layer = self.input_layer(input.shape)
        input_theano = theano.shared(input)

        layer = self.fixedgaussian_layer(input_layer, filter_size, init_std)
        layer_result = layer.get_output_for(input_theano).eval()

        # theano gaussian filter
        theano_gf = layer.W.eval()

        # numpy gaussian filter
        np_gf = self.make_numpy_gaussian_filter_v2(filter_size, init_std)

        numpy_result = self.convolve_numpy_array(input, np_gf)

        assert np.all(numpy_result.shape == layer.output_shape)
        assert np.all(numpy_result.shape == layer_result.shape)
        assert np.allclose(theano_gf[0, 0, :], np_gf[0, 0, :])
        assert np.allclose(numpy_result, layer_result) 
開發者ID:ciaua,項目名稱:clip2frame,代碼行數:26,代碼來源:test_gaussian_layers.py

示例3: transform_im

# 需要導入模塊: from lasagne import utils [as 別名]
# 或者: from lasagne.utils import floatX [as 別名]
def transform_im(x, npx=64, nc=3):
    if nc == 3:
        x1 = (x + sharedX(1.0)) * sharedX(127.5)
    else:
        x1 = T.tile(x, [1, 1, 1, 3]) * sharedX(255.0)  # [hack] to-be-tested

    mean_channel = np.load(os.path.join(pkg_dir, 'ilsvrc_2012_mean.npy')).mean(1).mean(1)
    mean_im = mean_channel[np.newaxis, :, np.newaxis, np.newaxis]
    mean_im = floatX(np.tile(mean_im, [1, 1, npx, npx]))
    x2 = x1[:, [2, 1, 0], :, :]
    y = x2 - mean_im
    return y 
開發者ID:junyanz,項目名稱:iGAN,代碼行數:14,代碼來源:AlexNet.py

示例4: get_stepwise

# 需要導入模塊: from lasagne import utils [as 別名]
# 或者: from lasagne.utils import floatX [as 別名]
def get_stepwise(k=10, factor=0.5):
    """
    Stepwise learning rate update every k epochs
    """
    def update(lr, epoch):

        if epoch >= 0 and np.mod(epoch, k) == 0:
            return floatX(factor * lr)
        else:
            return floatX(lr)

    return update 
開發者ID:CPJKU,項目名稱:dcase_task2,代碼行數:14,代碼來源:learn_rate_shedules.py

示例5: get_predefined

# 需要導入模塊: from lasagne import utils [as 別名]
# 或者: from lasagne.utils import floatX [as 別名]
def get_predefined(schedule):
    """
    Predefined learn rate changes at specified epochs
    :param schedule:  dictionary that maps epochs to to learn rate values.
    """

    def update(lr, epoch):
        if epoch in schedule:
            return floatX(schedule[epoch])
        else:
            return floatX(lr)

    return update 
開發者ID:CPJKU,項目名稱:dcase_task2,代碼行數:15,代碼來源:learn_rate_shedules.py

示例6: get_linear

# 需要導入模塊: from lasagne import utils [as 別名]
# 或者: from lasagne.utils import floatX [as 別名]
def get_linear(start_at, ini_lr, decrease_epochs):
    """ linear learn rate schedule"""

    def update(lr, epoch):
        if epoch < start_at:
            return floatX(lr)
        else:
            k = ini_lr / decrease_epochs
            return floatX(np.max([0.0, lr - k]))

    return update 
開發者ID:CPJKU,項目名稱:dcase_task2,代碼行數:13,代碼來源:learn_rate_shedules.py

示例7: get_cosine

# 需要導入模塊: from lasagne import utils [as 別名]
# 或者: from lasagne.utils import floatX [as 別名]
def get_cosine(lr_min, lr_max, t_max):

    def update(lr, epoch):
        lr_t = lr_min + 0.5 * (lr_max - lr_min) * (1 + np.cos(np.pi * epoch / t_max))
        # lr_t = lr_min + 0.5 * (lr_max - lr_min) * (1 + np.cos(np.pi + 2.0 * np.pi * epoch / t_max))
        return floatX(lr_t)

    return update 
開發者ID:CPJKU,項目名稱:dcase_task2,代碼行數:10,代碼來源:learn_rate_shedules.py

示例8: sample

# 需要導入模塊: from lasagne import utils [as 別名]
# 或者: from lasagne.utils import floatX [as 別名]
def sample(self, shape):
        if len(shape) != 2 or shape[0] != shape[1]:
            raise ValueError('LeInit initializer can only be used for 2D square matrices.')
            
        off_diag_part = self.offdiag_val * np.random.randn(shape[0], shape[1])
        return floatX(np.eye(shape[0]) * self.diag_val + off_diag_part - np.diag(np.diag(off_diag_part))) 
開發者ID:eminorhan,項目名稱:recurrent-memory,代碼行數:8,代碼來源:LeInit.py

示例9: sample

# 需要導入模塊: from lasagne import utils [as 別名]
# 或者: from lasagne.utils import floatX [as 別名]
def sample(self, shape):
        if len(shape) != 2:
            raise ValueError('The OneHot initializer '
                             'only works with 2D arrays.')
        M = np.min(shape)
        arr = np.zeros(shape)
        arr[:M, :M] += 1 * np.eye(M)
        return floatX(arr) 
開發者ID:snipsco,項目名稱:ntm-lasagne,代碼行數:10,代碼來源:init.py

示例10: prepare_image

# 需要導入模塊: from lasagne import utils [as 別名]
# 或者: from lasagne.utils import floatX [as 別名]
def prepare_image(img, width, means):
    
    # if not RGB, force 3 channels
    if len(img.shape) == 2:
        img = img[:, :, np.newaxis]
        img = np.repeat(img, 3, axis=2)
    h, w, _ = img.shape
    if h < w:
        img = skimage.transform.resize(img, (width, w*width/h), preserve_range=True)
    else:
        img = skimage.transform.resize(img, (h*width/w, width), preserve_range=True)

    # crop the center
    h, w, _ = img.shape
    img = img[h//2 - width//2:h//2 + width//2, w//2 - width//2:w//2 + width//2]
    
    rawim = np.copy(img).astype('uint8')
    
    # shuffle axes to c01
    img = np.swapaxes(np.swapaxes(img, 1, 2), 0, 1)
    
    # convert RGB to BGR
    img = img[::-1, :, :]
    
    # zero mean scaling
    img = img - means
    
    return rawim, floatX(img[np.newaxis]) 
開發者ID:ogencoglu,項目名稱:ArtsyNetworks,代碼行數:30,代碼來源:art_it_up.py

示例11: eval_loss

# 需要導入模塊: from lasagne import utils [as 別名]
# 或者: from lasagne.utils import floatX [as 別名]
def eval_loss(x0, width):
    # Helper function to interface with scipy.optimize
    
    x0 = floatX(x0.reshape((1, 3, width, width)))
    generated.set_value(x0)
    
    return f_loss().astype('float64') 
開發者ID:ogencoglu,項目名稱:ArtsyNetworks,代碼行數:9,代碼來源:art_it_up.py

示例12: eval_grad

# 需要導入模塊: from lasagne import utils [as 別名]
# 或者: from lasagne.utils import floatX [as 別名]
def eval_grad(x0, width):
    # Helper function to interface with scipy.optimize
    
    x0 = floatX(x0.reshape((1, 3, width, width)))
    generated.set_value(x0)
    
    return np.array(f_grad()).flatten().astype('float64') 
開發者ID:ogencoglu,項目名稱:ArtsyNetworks,代碼行數:9,代碼來源:art_it_up.py

示例13: retrieve_proposals

# 需要導入模塊: from lasagne import utils [as 別名]
# 或者: from lasagne.utils import floatX [as 別名]
def retrieve_proposals(self, c3d_stack, f_init_array, override=False):
        """Retrieve proposals for multiple streams.

        Parameters
        ----------
        c3d_stack : ndarray
            3d-ndarray [num-streams, seq-length, input-size] with visual
            encoder representation of each stream.
            Note that the first dimension is sequence agnostic so you can
            push as many videos as your HW allows it.
        f_init_array : ndarray.
            1d-ndarray with initial frame of each stream.
        override : bool, optional.
            If True, override predicted locations with anchors. Make sure of
            initialize your instance properly in order to use the anchors.

        Returns
        -------
        proposals : ndarray
            3d-ndarray [num-streams, num-outputs, 2] with proposal locations in
            terms of f-init, f-end.
        conf : ndarray
            2d-ndarray [num-streams, num-outputs] action likelihood of each
            proposal

        Raises
        ------
        ValueError
            Mistmatch between c3d_stack.shape[0] and f_init_array.size

        """
        if c3d_stack.ndim == 2 and c3d_stack.shape[0] == self.seq_length:
            c3d_stack = c3d_stack[np.newaxis, ...]
        if c3d_stack.shape[0] != f_init_array.size:
            raise ValueError('Mismatch between c3d_stack and f_init_array')
        n_streams = c3d_stack.shape[0]

        loc, score = self.forward_pass(floatX(c3d_stack))

        if override and self.anchors is not None:
            loc[:, ...] = self.anchors.reshape(-1)

        # Clip proposals inside receptive field
        loc.clip(0, 1, out=loc)
        loc *= self.receptive_field

        # Shift center to absolute location in the video
        loc = loc.reshape((n_streams, -1, 2))
        loc[:, :, 0] += f_init_array.reshape((n_streams, 1))

        # Transform center 2 boundaries
        proposals = np.reshape(
            segment_format(loc.reshape((-1, 2)), 'c2b'),
            (n_streams, -1, 2)).astype(int)
        return proposals, score 
開發者ID:escorciav,項目名稱:daps,代碼行數:57,代碼來源:sequence_encoder.py

示例14: adv

# 需要導入模塊: from lasagne import utils [as 別名]
# 或者: from lasagne.utils import floatX [as 別名]
def adv(i, C_value):
    img = X_test[i][np.newaxis]
    print "True class:\t", y_test[i]
    
    input_img = T.tensor4()

    #plot("orig_img_"+str(i),img)
    l_noise.b.set_value(np.random.uniform(-1e-8, 1e-8, size=(3,32,32)).astype(np.float32))
    
    pred = np.array(lasagne.layers.get_output(network, img, deterministic=True).eval())
    top1 = np.argmax(pred)
    target = np.zeros(pred.shape)
    
    adv_class = np.random.randint(0, 10)
    while adv_class == top1:
        adv_class = np.random.randint(0, 10)
    
    target[0,adv_class] = 1.0
    print "Before ADV top1:\t", top1

    bayesian_prob = lasagne.layers.get_output(network, input_img, deterministic=False)
    bayesian_function = theano.function([input_img], [bayesian_prob])
    
    bayesian_pred = np.zeros(pred.shape)
    for _ in range(25):
        bayesian_pred[0, np.argmax(bayesian_function(img))] += 1
    print "Before ADV Bayesian top1:\t", np.argmax(bayesian_pred)
    
    print "Adversarial class:\t", adv_class
    
    prob = lasagne.layers.get_output(network, input_img, deterministic=False)
    C = T.scalar()
    adv_loss = lasagne.objectives.categorical_crossentropy(prob, floatX(target)).mean() + C*lasagne.regularization.l2(l_noise.b)
    adv_grad = T.grad(adv_loss, l_noise.b)
    
    adv_function = theano.function([input_img, C], [adv_loss, adv_grad, prob])
    
    # Optimization function for L-BFGS-B
    def fmin_func(x, T = 25):
        l_noise.b.set_value(x.reshape(3, 32, 32).astype(np.float32))
        f, g, _ = adv_function(np.repeat(img, T, 0), C_value)
        return float(f), g.flatten().astype(np.float64)
        
    # Noise bounds (pixels cannot exceed 0-1)
    #bounds = zip(-(mean_cifar-img).flatten(), ((255.0-mean_cifar)-img).flatten())
    
    # L-BFGS-B optimization to find adversarial noise
    x, f, d = scipy.optimize.fmin_l_bfgs_b(fmin_func, l_noise.b.get_value().flatten(), bounds = None, fprime = None, factr = 1e10, m = 15)
    l_noise.b.set_value(x.reshape(3, 32, 32).astype(np.float32))
    
    _, _, pred = adv_function(img, 0.0)
    top1 = np.argmax(pred)
    print "After ADV top1:\t", top1
    #plot("adv_img_"+str(i), img + l_noise.b.get_value())
    
    bayesian_pred = np.zeros(pred.shape)
    for _ in range(25):
        bayesian_pred[0, np.argmax(bayesian_function(img))] += 1
    print "After ADV Bayesian top1:\t", np.argmax(bayesian_pred)
    print
    print 
開發者ID:tabacof,項目名稱:bayesian-nn-uncertainty,代碼行數:63,代碼來源:cifar_dropout_adv_img.py


注:本文中的lasagne.utils.floatX方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。