本文整理匯總了Python中lasagne.updates方法的典型用法代碼示例。如果您正苦於以下問題:Python lasagne.updates方法的具體用法?Python lasagne.updates怎麽用?Python lasagne.updates使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類lasagne
的用法示例。
在下文中一共展示了lasagne.updates方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make_training_functions
# 需要導入模塊: import lasagne [as 別名]
# 或者: from lasagne import updates [as 別名]
def make_training_functions(network, new_params, input_var, aug_var, target_var):
output = lasagne.layers.get_output(network, deterministic=True, batch_norm_use_averages=True, batch_norm_update_averages=False);
loss = lasagne.objectives.binary_crossentropy(output, target_var).mean();
deter_output = lasagne.layers.get_output(network, deterministic=True);
deter_loss = lasagne.objectives.binary_crossentropy(deter_output, target_var).mean();
params = layers.get_all_params(network, trainable=True);
updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=LearningRate, momentum=0.985);
new_params_updates = lasagne.updates.nesterov_momentum(loss, new_params, learning_rate=LearningRate, momentum=0.985);
val_fn = theano.function([input_var, aug_var, target_var], [deter_loss, deter_output]);
train_fn = theano.function([input_var, aug_var, target_var], loss, updates=updates);
new_params_train_fn = theano.function([input_var, aug_var, target_var], loss, updates=new_params_updates);
return train_fn, new_params_train_fn, val_fn;
示例2: make_training_functions
# 需要導入模塊: import lasagne [as 別名]
# 或者: from lasagne import updates [as 別名]
def make_training_functions(network, new_params, input_var, aug_var, target_var):
output = lasagne.layers.get_output(network);
loss = lasagne.objectives.binary_crossentropy(output, target_var).mean();
deter_output = lasagne.layers.get_output(network, deterministic=True);
deter_loss = lasagne.objectives.binary_crossentropy(deter_output, target_var).mean();
params = layers.get_all_params(network, trainable=True);
updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=LearningRate, momentum=0.985);
new_params_updates = lasagne.updates.nesterov_momentum(loss, new_params, learning_rate=LearningRate, momentum=0.985);
val_fn = theano.function([input_var, aug_var, target_var], [deter_loss, deter_output]);
train_fn = theano.function([input_var, aug_var, target_var], loss, updates=updates);
new_params_train_fn = theano.function([input_var, aug_var, target_var], loss, updates=new_params_updates);
return train_fn, new_params_train_fn, val_fn;
示例3: make_training_functions
# 需要導入模塊: import lasagne [as 別名]
# 或者: from lasagne import updates [as 別名]
def make_training_functions(network, new_params, input_var, aug_var, target_var):
output = lasagne.layers.get_output(network, deterministic=False);
loss = lasagne.objectives.binary_crossentropy(output, target_var).mean();
deter_output = lasagne.layers.get_output(network, deterministic=True);
deter_loss = lasagne.objectives.binary_crossentropy(deter_output, target_var).mean();
params = layers.get_all_params(network, trainable=True);
updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=LearningRate, momentum=0.985);
new_params_updates = lasagne.updates.nesterov_momentum(loss, new_params, learning_rate=LearningRate, momentum=0.985);
val_fn = theano.function([input_var, aug_var, target_var], [deter_loss, deter_output]);
train_fn = theano.function([input_var, aug_var, target_var], loss, updates=updates);
new_params_train_fn = theano.function([input_var, aug_var, target_var], loss, updates=new_params_updates);
return train_fn, new_params_train_fn, val_fn;
示例4: make_training_functions
# 需要導入模塊: import lasagne [as 別名]
# 或者: from lasagne import updates [as 別名]
def make_training_functions(network, new_params, input_var, aug_var, target_var):
output = lasagne.layers.get_output(network, deterministic=True);
loss = lasagne.objectives.binary_crossentropy(output, target_var).mean();
deter_output = lasagne.layers.get_output(network, deterministic=True);
deter_loss = lasagne.objectives.binary_crossentropy(deter_output, target_var).mean();
params = layers.get_all_params(network, trainable=True);
updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=LearningRate, momentum=0.985);
new_params_updates = lasagne.updates.nesterov_momentum(loss, new_params, learning_rate=LearningRate, momentum=0.985);
val_fn = theano.function([input_var, aug_var, target_var], [deter_loss, deter_output]);
train_fn = theano.function([input_var, aug_var, target_var], loss, updates=updates);
new_params_train_fn = theano.function([input_var, aug_var, target_var], loss, updates=new_params_updates);
return train_fn, new_params_train_fn, val_fn;