本文整理匯總了Python中lasagne.objectives.categorical_crossentropy方法的典型用法代碼示例。如果您正苦於以下問題:Python objectives.categorical_crossentropy方法的具體用法?Python objectives.categorical_crossentropy怎麽用?Python objectives.categorical_crossentropy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類lasagne.objectives
的用法示例。
在下文中一共展示了objectives.categorical_crossentropy方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: build_model
# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 別名]
def build_model(self):
import theano.tensor as T
self.x = T.ftensor4('x')
self.y = T.lvector('y')
self.lr = T.scalar('lr')
net = build_model_vgg16(input_shape=(None, 3, 224, 224), verbose=self.verbose)
self.output_layer = net['prob']
from lasagne.layers import get_output
self.output = lasagne.layers.get_output(self.output_layer, self.x, deterministic=False)
self.cost = lasagne.objectives.categorical_crossentropy(self.output, self.y).mean()
from lasagne.objectives import categorical_accuracy
self.error = 1-categorical_accuracy(self.output, self.y, top_k=1).mean()
self.error_top_5 = 1-categorical_accuracy(self.output, self.y, top_k=5).mean()
示例2: compile_val
# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 別名]
def compile_val(self):
if self.verbose: print('compiling validation function...')
import theano
from lasagne.layers import get_output
output_val = lasagne.layers.get_output(self.output_layer, self.x, deterministic=True)
from lasagne.objectives import categorical_accuracy, categorical_crossentropy
cost = categorical_crossentropy(output_val, self.y).mean()
error = 1-categorical_accuracy(output_val, self.y, top_k=1).mean()
error_top_5 = 1-categorical_accuracy(output_val, self.y, top_k=5).mean()
self.val_fn= theano.function([self.subb_ind], [cost,error,error_top_5], updates=[],
givens=[(self.x, self.shared_x_slice),
(self.y, self.shared_y_slice)]
)
示例3: build_model
# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 別名]
def build_model(self):
import theano.tensor as T
self.x = T.ftensor4('x')
self.y = T.lvector('y')
self.lr = T.scalar('lr')
net = build_model_resnet50(input_shape=(None, 3, 224, 224))
if self.verbose: print('Total number of layers:', len(lasagne.layers.get_all_layers(net['prob'])))
self.output_layer = net['prob']
from lasagne.layers import get_output
self.output = lasagne.layers.get_output(self.output_layer, self.x, deterministic=False)
self.cost = lasagne.objectives.categorical_crossentropy(self.output, self.y).mean()
from lasagne.objectives import categorical_accuracy
self.error = 1-categorical_accuracy(self.output, self.y, top_k=1).mean()
self.error_top_5 = 1-categorical_accuracy(self.output, self.y, top_k=5).mean()
示例4: build_model
# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 別名]
def build_model(self):
import theano.tensor as T
self.x = T.ftensor4('x')
self.y = T.lvector('y')
self.lr = T.scalar('lr')
net = build_model_resnet152(input_shape=(None, 3, 224, 224))
self.output_layer = net['prob']
from lasagne.layers import get_output
self.output = lasagne.layers.get_output(self.output_layer, self.x, deterministic=False)
self.cost = lasagne.objectives.categorical_crossentropy(self.output, self.y).mean()
from lasagne.objectives import categorical_accuracy
self.error = 1-categorical_accuracy(self.output, self.y, top_k=1).mean()
self.error_top_5 = 1-categorical_accuracy(self.output, self.y, top_k=5).mean()
示例5: calc_loss
# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 別名]
def calc_loss(prediction, targets):
#categorical crossentropy is the best choice for a multi-class softmax output
loss = T.mean(objectives.categorical_crossentropy(prediction, targets))
return loss
示例6: calc_loss
# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 別名]
def calc_loss(prediction, targets):
# Categorical crossentropy is the best choice for a multi-class softmax output
loss = T.mean(objectives.categorical_crossentropy(prediction, targets))
return loss
示例7: __init__
# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 別名]
def __init__(self, x, y, args):
self.params_theta = []
self.params_lambda = []
self.params_weight = []
if args.dataset == 'mnist':
input_size = (None, 1, 28, 28)
elif args.dataset == 'cifar10':
input_size = (None, 3, 32, 32)
else:
raise AssertionError
layers = [ll.InputLayer(input_size)]
self.penalty = theano.shared(np.array(0.))
#conv1
layers.append(Conv2DLayerWithReg(args, layers[-1], 20, 5))
self.add_params_to_self(args, layers[-1])
layers.append(ll.MaxPool2DLayer(layers[-1], pool_size=2, stride=2))
#conv1
layers.append(Conv2DLayerWithReg(args, layers[-1], 50, 5))
self.add_params_to_self(args, layers[-1])
layers.append(ll.MaxPool2DLayer(layers[-1], pool_size=2, stride=2))
#fc1
layers.append(DenseLayerWithReg(args, layers[-1], num_units=500))
self.add_params_to_self(args, layers[-1])
#softmax
layers.append(DenseLayerWithReg(args, layers[-1], num_units=10, nonlinearity=nonlinearities.softmax))
self.add_params_to_self(args, layers[-1])
self.layers = layers
self.y = ll.get_output(layers[-1], x, deterministic=False)
self.prediction = T.argmax(self.y, axis=1)
# self.penalty = penalty if penalty != 0. else T.constant(0.)
print(self.params_lambda)
# time.sleep(20)
# cost function
self.loss = T.mean(categorical_crossentropy(self.y, y))
self.lossWithPenalty = T.add(self.loss, self.penalty)
print "loss and losswithpenalty", type(self.loss), type(self.lossWithPenalty)
示例8: create_iter_functions
# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 別名]
def create_iter_functions(self, dataset, output_layer, X_tensor_type=T.matrix):
batch_index = T.iscalar('batch_index')
X_batch = X_tensor_type('x')
y_batch = T.ivector('y')
batch_slice = slice(batch_index * self.batch_size, (batch_index + 1) * self.batch_size)
objective = Objective(output_layer, loss_function=categorical_crossentropy)
loss_train = objective.get_loss(X_batch, target=y_batch)
loss_eval = objective.get_loss(X_batch, target=y_batch, deterministic=True)
pred = T.argmax(output_layer.get_output(X_batch, deterministic=True), axis=1)
proba = output_layer.get_output(X_batch, deterministic=True)
accuracy = T.mean(T.eq(pred, y_batch), dtype=theano.config.floatX)
all_params = get_all_params(output_layer)
updates = adagrad(loss_train, all_params, self.lr, self.epsilon)
iter_train = theano.function(
[batch_index], loss_train,
updates=updates,
givens={
X_batch: dataset['X_train'][batch_slice],
y_batch: dataset['y_train'][batch_slice],
},
on_unused_input='ignore',
)
iter_valid = None
if self.use_valid:
iter_valid = theano.function(
[batch_index], [loss_eval, accuracy, proba],
givens={
X_batch: dataset['X_valid'][batch_slice],
y_batch: dataset['y_valid'][batch_slice],
},
)
return dict(train=iter_train, valid=iter_valid)
示例9: create_iter_functions
# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 別名]
def create_iter_functions(self, dataset, output_layer, X_tensor_type=T.matrix):
batch_index = T.iscalar('batch_index')
X_batch = X_tensor_type('x')
y_batch = T.ivector('y')
batch_slice = slice(batch_index * self.batch_size, (batch_index + 1) * self.batch_size)
objective = Objective(output_layer, loss_function=categorical_crossentropy)
loss_train = objective.get_loss(X_batch, target=y_batch)
loss_eval = objective.get_loss(X_batch, target=y_batch, deterministic=True)
pred = T.argmax(output_layer.get_output(X_batch, deterministic=True), axis=1)
proba = output_layer.get_output(X_batch, deterministic=True)
accuracy = T.mean(T.eq(pred, y_batch), dtype=theano.config.floatX)
all_params = get_all_params(output_layer)
updates = adagrad(loss_train, all_params, self.lr, self.rho)
iter_train = theano.function(
[batch_index], loss_train,
updates=updates,
givens={
X_batch: dataset['X_train'][batch_slice],
y_batch: dataset['y_train'][batch_slice],
},
on_unused_input='ignore',
)
iter_valid = None
if self.use_valid:
iter_valid = theano.function(
[batch_index], [loss_eval, accuracy, proba],
givens={
X_batch: dataset['X_valid'][batch_slice],
y_batch: dataset['y_valid'][batch_slice],
},
)
return dict(train=iter_train, valid=iter_valid)
示例10: create_iter_functions
# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 別名]
def create_iter_functions(self, dataset, output_layer, X_tensor_type=T.matrix):
batch_index = T.iscalar('batch_index')
X_batch = X_tensor_type('x')
y_batch = T.ivector('y')
batch_slice = slice(batch_index * self.batch_size, (batch_index + 1) * self.batch_size)
objective = Objective(output_layer, loss_function=categorical_crossentropy)
loss_train = objective.get_loss(X_batch, target=y_batch)
loss_eval = objective.get_loss(X_batch, target=y_batch, deterministic=True)
pred = T.argmax(output_layer.get_output(X_batch, deterministic=True), axis=1)
proba = output_layer.get_output(X_batch, deterministic=True)
accuracy = T.mean(T.eq(pred, y_batch), dtype=theano.config.floatX)
all_params = get_all_params(output_layer)
updates = rmsprop(loss_train, all_params, self.lr, self.rho)
iter_train = theano.function(
[batch_index], loss_train,
updates=updates,
givens={
X_batch: dataset['X_train'][batch_slice],
y_batch: dataset['y_train'][batch_slice],
},
on_unused_input='ignore',
)
iter_valid = None
if self.use_valid:
iter_valid = theano.function(
[batch_index], [loss_eval, accuracy, proba],
givens={
X_batch: dataset['X_valid'][batch_slice],
y_batch: dataset['y_valid'][batch_slice],
},
)
return dict(train=iter_train, valid=iter_valid)
示例11: create_iter_functions
# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 別名]
def create_iter_functions(self, dataset, output_layer, X_tensor_type=T.matrix):
batch_index = T.iscalar('batch_index')
X_batch = X_tensor_type('x')
y_batch = T.ivector('y')
batch_slice = slice(batch_index * self.batch_size, (batch_index + 1) * self.batch_size)
objective = Objective(output_layer, loss_function=categorical_crossentropy)
loss_train = objective.get_loss(X_batch, target=y_batch)
loss_eval = objective.get_loss(X_batch, target=y_batch, deterministic=True)
pred = T.argmax(output_layer.get_output(X_batch, deterministic=True), axis=1)
proba = output_layer.get_output(X_batch, deterministic=True)
accuracy = T.mean(T.eq(pred, y_batch), dtype=theano.config.floatX)
all_params = get_all_params(output_layer)
updates = lasagne.updates.nesterov_momentum(loss_train, all_params, self.lr, self.momentum)
iter_train = theano.function(
[batch_index], loss_train,
updates=updates,
givens={
X_batch: dataset['X_train'][batch_slice],
y_batch: dataset['y_train'][batch_slice],
},
on_unused_input='ignore',
)
iter_valid = None
if self.use_valid:
iter_valid = theano.function(
[batch_index], [loss_eval, accuracy, proba],
givens={
X_batch: dataset['X_valid'][batch_slice],
y_batch: dataset['y_valid'][batch_slice],
},
)
return dict(train=iter_train, valid=iter_valid)
示例12: categorical_crossentropy_stable
# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 別名]
def categorical_crossentropy_stable(predictions, targets):
epsilon = 1e-08
predictions = T.clip(predictions, epsilon, 1.0 - epsilon)
return T.nnet.categorical_crossentropy(predictions, targets)
示例13: __init__
# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 別名]
def __init__(self):
# Define inputs
input_var = T.ftensor4('input_var') # input images (batchx3x64x64)
labels_classifier_var = T.ivector('labels_classifier_var') # labels for images
labels_domain_var = T.ivector('labels_domain_var') # labels for domain (1 for source, 0 for target)
learning_rate = T.fscalar('learning_rate')
# Define classifier networks
network_classifier = self.network_classifier(input_var)
network_discriminator = self.network_discriminator(network_classifier['classifier/pool1'])
# Define outputs
prediction_classifier = get_output(network_classifier['classifier/output']) # prob image classification
prediction_discriminator = get_output(network_discriminator['discriminator/output']) # prob image domain (should be 1 for source)
# Define losses (objectives)
loss_classifier_only = T.mean(categorical_crossentropy(prediction_classifier, labels_classifier_var) * labels_domain_var)
loss_discriminator = T.mean(categorical_crossentropy(prediction_discriminator, labels_domain_var))
loss_classifier = loss_classifier_only - loss_discriminator
# Define performance
perf_classifier_only = categorical_accuracy(prediction_classifier, labels_classifier_var).mean()
perf_discriminator = categorical_accuracy(prediction_discriminator, labels_domain_var).mean()
# Define params
params_classifier = lasagne.layers.get_all_params(network_classifier['classifier/output'], trainable=True)
params_discriminator = lasagne.layers.get_all_params(network_discriminator['discriminator/output'], trainable=True)
params_discriminator = [param for param in params_discriminator if 'discriminator' in param.name]
# Define updates
updates_classifier = lasagne.updates.adam(loss_classifier, params_classifier, learning_rate=learning_rate)
updates_classifier_only = lasagne.updates.adam(loss_classifier_only, params_classifier, learning_rate=learning_rate)
updates_discriminator = lasagne.updates.adam(loss_discriminator, params_discriminator, learning_rate=learning_rate)
# Define training functions
self.train_fn_classifier = theano.function(
[input_var, labels_classifier_var, labels_domain_var, learning_rate],
[loss_classifier, loss_classifier_only, prediction_classifier],
updates=updates_classifier)
self.train_fn_classifier_only = theano.function(
[input_var, labels_classifier_var, labels_domain_var, learning_rate],
[loss_classifier, loss_classifier_only, prediction_classifier],
updates=updates_classifier_only)
self.train_fn_discriminator = theano.function(
[input_var, labels_domain_var, learning_rate],
[loss_discriminator, prediction_discriminator],
updates=updates_discriminator)
# Define validation functions
self.valid_fn_classifier = theano.function(
[input_var, labels_classifier_var],
[perf_classifier_only, prediction_classifier])
self.valid_fn_discriminator = theano.function(
[input_var, labels_domain_var],
[perf_discriminator, prediction_discriminator])
示例14: compile_update_softmax
# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 別名]
def compile_update_softmax(nnet, inputs, targets):
"""
create a softmax loss for network given in argument
"""
floatX = Cfg.floatX
C = Cfg.C
final_layer = nnet.all_layers[-1]
trainable_params = lasagne.layers.get_all_params(final_layer, trainable=True)
# Regularization
if Cfg.weight_decay:
l2_penalty = (floatX(0.5) / C) * get_l2_penalty(nnet)
else:
l2_penalty = T.cast(0, dtype='floatX')
# Backpropagation
prediction = lasagne.layers.get_output(final_layer, inputs=inputs, deterministic=False)
if Cfg.ad_experiment:
train_loss = T.mean(l_objectives.binary_crossentropy(prediction.flatten(), targets), dtype='floatX')
train_acc = T.mean(l_objectives.binary_accuracy(prediction.flatten(), targets), dtype='floatX')
else:
train_loss = T.mean(l_objectives.categorical_crossentropy(prediction, targets), dtype='floatX')
train_acc = T.mean(T.eq(T.argmax(prediction, axis=1), targets), dtype='floatX')
train_obj = T.cast(train_loss + l2_penalty, dtype='floatX')
updates = get_updates(nnet, train_obj, trainable_params, solver=nnet.solver)
nnet.backprop = theano.function([inputs, targets], [train_obj, train_acc], updates=updates)
# Forwardpropagation
test_prediction = lasagne.layers.get_output(final_layer, inputs=inputs, deterministic=True)
if Cfg.ad_experiment:
test_loss = T.mean(l_objectives.binary_crossentropy(test_prediction.flatten(), targets), dtype='floatX')
test_acc = T.mean(l_objectives.binary_accuracy(test_prediction.flatten(), targets), dtype='floatX')
else:
test_loss = T.mean(l_objectives.categorical_crossentropy(test_prediction, targets), dtype='floatX')
test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), targets), dtype='floatX')
test_obj = T.cast(test_loss + l2_penalty, dtype='floatX')
nnet.forward = theano.function([inputs, targets], [test_obj, test_acc, test_prediction, l2_penalty, test_loss])